《2016年春新北师大版八年级数学下册全册教案.docx》由会员分享,可在线阅读,更多相关《2016年春新北师大版八年级数学下册全册教案.docx(281页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、第一章 三角形的证明【单元分析】本章是八年级上册第七章平行线的证明的接着,在“同等线的证明一章中,我们给出了 8 条根本事实,并从其中的几条根本事实动身证明了有关平行线的一些结论。 运用这些根本事实和已经学习过的定理,我们还可以证明有关三角形的一些结论。在这之前,学生已经对图形的性质与其互相关系进展了大量的探究,探究的同时也经验过一些简洁的推理过程,已经具备了确定的推理实力,树立了初步的推理意识,从而为本章进一步严格证明三角形有关定理打下了根底。【单元目的】1.学问与技能 1等腰三角形的性质和断定定理; 2直角三角形的性质定理和断定定理; 2.过程与方法 1会运用等腰三角形的性质和断定定理解决
2、相关问题; 2直角三角形的性质定理和断定定理解决简洁的实际问题; 3.情感看法与价值观 1经验由情景引出问题,探究驾驭有关数学学问,再运用于理论的过程,培育学数学、用数学的意识与实力; 2感受数学文化的价值和中国传统数学的成就,激发学生酷爱祖国与酷爱祖国悠久文化的思想感情。【单元重点】在证明过程中,进一步感受证明过程,驾驭推理证明的根本要求,明确条件和结论,可以借助数学符号语言利用综合法证明等腰三角形的性质定理和断定定理。【单元难点】明确推理证明的根本要求如明确条件和结论,能否用数学语言正确表达等。【教学思路】1.对于已有命题的证明,教学过程中要留意引导学生回忆过去的探究、说理过程,从中获得严
3、格证明的思路;对于新增命题,教学过程中要重视学生的探究、证明过程,关注该命题与其他已有命题之间的关系;对于整章的命题,留意关注将这些命题纳入一个命题系统,关注命题之间的关系,从而形成对相关图形整体的相识。2.对于证明的方法,除了留意启发和回忆,还应留意关注证明方法的多样性,力图通过学生的自主探究,获得多样的证明方法,并在比较中选择适当的方法。3.证明过程中留意提示蕴含其中的数学思想方法,如转化、归纳、类比等。4.作为初中阶段几何证明的最终阶段,教学中应要求学生驾驭综合法和分析法证明命题的根本要求,驾驭标准的证明表述过程,达成课程标准对证明表述的要求。【单元课时支配】课题课时1.1 等腰三角形4
4、课时1.2 直角三角形2课时1.3 线段的垂直平分线2课时1.4 角平分线2课时回忆与思索2课时1.1 等腰三角形【教学目的】1学问与技能 理解作为证明根底的几条公理的内容,应用这些公理证明等腰三角形的性质定理。2过程与方法 经验“探究发觉揣测证明的过程,让学生进一步体会证明是探究活动的自然持续和必要开展,开展学生的初步的演绎逻辑推理的实力。3情感看法与价值观 启发引导学生体会探究结论和证明结论,与合情推理与演绎的互相依靠和互相补充的辩证关系。【教学重点】经验“探究发觉一一揣测证明的过程。【教学难点】用综合法证明有关三角形和等腰三角形的一些结论。【教学方法】讲授法【课时支配】 4课时第一课时【
5、教学目的】1学问与技能 可以借助数学符号语言利用综合法证明等腰三角形的性质定理和断定定理。2过程与方法 经验“探究发觉揣测证明的过程,让学生进一步体会证明是探究活动的自然持续和必要开展,开展学生的初步的演绎逻辑推理的实力。3情感看法与价值观 启发引导学生体会探究结论和证明结论,与合情推理与演绎的互相依靠和互相补充的辩证关系。【教学重点】探究证明等腰三角形性质定理的思路与方法,驾驭证明的根本要求和方法。【教学难点】明确推理证明的根本要求如明确条件和结论,能否用数学语言正确表达等。【教学过程】教学过程教学随笔第一环节:回忆旧知 导出公理提请学生回忆并整理已经学过的8条根本事实中的5条:1.两直线被
6、第三条直线所截,假如同位角相等,那么这两条直线平行;2.两条平行线被第三条直线所截,同位角相等;3.两边夹角对应相等的两个三角形全等SAS;4.两角与其夹边对应相等的两个三角形全等ASA;5.三边对应相等的两个三角形全等SSS;在此根底上回忆全等三角形的另一判别条件:1.推论两角与其中一角的对边对应相等的两个三角形全等AAS,并要求学生利用前面所提到的公理进展证明;2.回忆全等三角形的性质。:如图,A=D,B=E,BC=EF.求证:ABCDEF.证明:A=D,B=E,又A+B+C=180,D+E+F=180三角形内角和等于180,C=180-(A+B),F=180-(D+E),C=F等量代换。
7、又BC=EF,ABCDEFASA。第二环节:折纸活动 探究新知在提问:“等腰三角形有哪些性质?以前是如何探究这些性质的,你能再次通过折纸活动验证这些性质吗?并根据折纸过程,得到这些性质的证明吗?的根底上,让学生经验这些定理的活动验证和证明过程。详细操作中,可以让学生先单独折纸视察、探究并写出等腰三角形的性质,然后再以六人为小组进展沟通,互相弥补缺乏。第三环节:明晰结论和证明过程在学生小组合作的根底上,老师通过分析、提问,和学生一起完成以上两个特性质定理的证明,留意最好让两至三个学生板演证明,其余学生选择其一证明.其后,老师通过课件汇总各小组的结果以与详细证明方法,给学生明晰证明过程。1等腰三角
8、形的两个底角相等;2等腰三角形顶角的平分线、底边中线、底边上高三条线重合第四环节:随堂练习 稳固新知学生自主完成P4第2题:如图图略,在ABD中,C是BD上的一点,且ACBD,AC=BC=CD,1求证:ABD是等腰三角形;2求BAD的度数。第五环节:课堂小结让学生畅谈收获,包括详细结论以与其中的思想方法等。第六环节:布置作业课本第4页习题1.1第2、3题【板书设计】1.1 等腰三角形一证明:A=D,B=E,又A+B+C=180,D+E+F=180三角形内角和等于180,C=180-(A+B),F=180-(D+E),C=F等量代换。又BC=EF,ABCDEFASA。【教学反思】 第二课时【教学
9、目的】1学问与技能 进一步熟识证明的根本步骤和书写格式,体会证明的必要性。2过程与方法让学生进一步体会证明是探究活动的自然持续和必要开展,开展学生的初步的演绎逻辑推理的实力。3情感看法与价值观 体验数学活动中的探究与创建,感受数学的严谨性。【教学重点】用面积法验证勾股定理。【教学难点】用综合法证明有关三角形和等腰三角形的一些结论。【教学过程】教学过程教学随笔第一环节:提出问题,引入新课在回忆上节课等腰三角形性质的根底上,提出问题:在等腰三角形中作出一些线段(如角平分线、中线、高等),你能发觉其中一第二环节:自主探究在等腰三角形中自主作出一些线段(如角平分线、中线、高等),视察其中有哪些相等的线
10、段,并尝试给出证明。你可能得到哪些相等的线段?你如何验证你的揣测?你能证明你的揣测吗?试作图,写出、求证和证明过程;还可以有哪些证明方法?通过学生的自主探究和同伴的沟通,学生一般都能在直观揣测、测量验证的根底上探究出:等腰三角形两个底角的平分线相等;等腰三角形腰上的高相等;等腰三角形腰上的中线相等并对这些命题赐予多样的证明。如对于“等腰三角形两底角的平分线相等,学生得到了下面的证明方法:如图,在ABC中,AB=AC,BD、CE是ABC的角平分线求证:BD=CE证法1:AB=AC,ABC=ACB(等边对等角)1=ABC,2=ABC,1=2在BDC和CEB中,ACB=ABC,BC=CB,1=2BD
11、CCEB(ASA)BD=CE(全等三角形的对应边相等) 证法2:证明:AB=AC,ABC=ACB又3=4在ABC和ACE中,3=4,AB=AC,A=AABDACE(ASA)BD=CE(全等三角形的对应边相等)第三环节:经典例题 变式练习提请学生思索,除了角平分线、中线、高等特殊的线段外,还可以有哪些线段相等?并在学生思索的根底上,讨论课本“议一议:在课本图14的等腰三角形ABC中,(1)假如ABD=ABC,ACE=ACB呢由此,你能得到一个什么结论(2)假如AD=AC,AE=AB,那么BD=CE吗假如AD=AC,AE=AB呢由此你得到什么结论第四环节:拓展延长,探究等边三角形性质提请学生在上面
12、等要三角形性质定理的根底上,思索等边三角形的特殊性质:等边三角形三个内角都相等并且每个内角都等于60.:在ABC中,AB=BC=AC求证:A=B=C=60.证明:在ABC中,AB=AC,B=C(等边对等角) 同理:C=A,A=B=C等量代换 又A+B+C180三角形内角和定理,A=B=C60学生一般都能得到这些定理的证明,能标准地写出对于“等边三角形三个内角都相等并且每个内角都等于60的证明过程: 第五环节: 随堂练习 与时稳固 在探究得到了等边三角形的性质的根底上,让学生独立完成以下练习。1. 如图,ABC和BDE都是等边三角形.求证:AE=CD 活动意图:在稳固等边三角形的性质的同时,进一
13、步驾驭综合证明法的根本要求和步骤,标准证明的书写格式。 第六环节:讨论收获 课时小结本节课我们通过视察探究、发觉并证明了等腰三角形中相等的线段,并由特殊结论归纳出一般结论,第七环节:布置作业课本第7页习题1.2第2、3题【板书设计】1.2 等腰三角形二:在ABC中,AB=BC=AC求证:A=B=C=60.证明:在ABC中,AB=AC,B=C(等边对等角) 同理:C=A,A=B=C等量代换 又A+B+C180三角形内角和定理,A=B=C60【教学反思】 第三课时【教学目的】1学问与技能探究等腰三角形断定定理。2过程与方法理解等腰三角形的断定定理,并会运用其进展简洁的证明。3情感看法与价值观 培育
14、学生的逆向思维实力。【教学重点】理解等腰三角形的断定定理。【教学难点】理解反证法的根本证明思路,并能简洁应用。【教学过程】教学过程教学随笔第一环节:复习引入 通过问题串回忆等腰三角形的性质定理以与证明的思路,要求学生独立思索后再进沟通。 问题1.等腰三角形性质定理的内容是什么?这个命题的题设和结论分别是什么? 问题2.我们是如何证明上述定理的? 问题3.我们把性质定理的条件和结论反过来还成立么?假如一个三角形有两个角相等,那么这两个角所对的边也相等? 第二环节:逆向思索,定理证明老师:上面,我们变更问题条件,得出了很多类似的结论,这是讨论问题的一种常用方法,除此之外,我们还可以“反过来思索问题
15、,这也是获得数学结论的一条途径例如“等边对等角,反过来成立吗也就是:有两个角相等的三角形是等腰三角形吗生如图,在ABC中,B=C,要想证明AB=AC,只要构造两个全等的三角形,使AB与AC成为对应边就可以了师你是如何想到的 生由前面定理的证明获得启发,比方作BC的中线,或作A的平分线,或作BC上的高,都可以把ABC分成两个全等的三角形师很好同学们可在练习本上尝试一下是否如此,然后分组讨论生我们组发觉,假如作BC的中线,虽然把ABC分成了两个三角形,但无法用公理和已证明的定理证明它们全等因为我们得到的条件是两个三角形对应两边与其一边的对角分别相等,是不可以推断两个三角形全等的后两种方法是可行的师
16、那么就请同学们任选一种方法按要求将推理证明过程书写出来(老师可让两个同学在黑板上演示,并对推理证明过程讲评)(证明略)师我们用“反过来思索问题,获得并证明了一个特别重要的定理等腰三角形的断定定理:有两个角相等的三角形是等腰三角形这确定理可以简洁表达为:等角对等边我们不仅发觉了几何图形的对称美,也发觉了数学语言的对称美第三环节:稳固练习将书中的随堂练习提早到此,是为了与时稳固断定定理。引导学生进展分析。:如图,CAE是ABC的外角,ADBC且1=2求证:AB=AC证明:ADBC,1=B(两直线平行,同位角相等),2=C(两直线平行,内错角相等) 又1=2,B=CAB=AC(等角对等边)第四环节:
17、适时提问 导出反证法我们类比归纳获得一个数学结论,“反过来思索问题也获得了一个数学结论假如否认命题的条件,是否也可获得一个数学结论吗我们一起来“想一想:小明说,在一个三角形中,假如两个角不相等,那么这两个角所对的边也不相等你认为这个结论成立吗假如成立,你能证明它吗有学生提出:“我认为这个结论是成立的因为我画了几个三角形,视察并测量发觉,假如两个角不相等,它们所对的边也不相等但要像证明“等角对等边那样却很难证明,因为它的条件和结论都是否认的的确如此像这种从正面人手很难证明的结论,我们有没有别的证明思路和方法呢我们来看一位同学的想法:如图,在ABC中,BC,此时AB与Ac要么相等,要么不相等假设A
18、B=AC,那么根据“等边对等角定理可得C=B,但条件是BC“C=B与条件“BC相冲突,因此ABAC你能理解他的推理过程吗再例如,我们要证明ABC中不行能有两个直角,也可以采纳这位同学的证法,假设有两个角是直角,不妨设A=90,B=90,可得A+B=180,但ABA+B+C=180, “A+B=180与“A+B+C=180相冲突,因此ABC中不行能有两个直角引导学生思索:上一道面的证法有什么共同的特点呢引出反证法。都是先假设命题的结论不成立,然后由此推导出了与或公理或已证明过的定理相冲突,从而证明命题的结论确定成立这也是证明命题的一种方法,我们把它叫做反证法接着用“反过来思索问题的方法获得并证明
19、了等腰三角形的断定定理“等角对等边,最终结合实例理解了反证法的含义第五环节:拓展延长 活动过程与效果:在一节课完毕之际,为培育学生思维的综合性、敏捷性特支配了2个练习。一个是通过平行线、角平分线断定三角形的形态,再通过线段的转换求图形的周长。另一个是一个开放性的问题,考察学生多角度多维度思索问题的实力。学生在独立思索的根底上再小组沟通。NMCBAD1.如图,BD平分CBA,CD平分ACB,且MNBC,设AB=12,AC=18,求AMN的周长. .2.现有等腰三角形纸片,假如能从一个角的顶点动身,将原纸片一次剪开成两块等腰三角形纸片,问此时的等腰三角形的顶角的度数 第六环节:课堂小结1本节课学习
20、了哪些内容?2等腰三角形的断定方法有哪几种? 3结合本节课的学习,谈谈等腰三角形性质和断定的区分和联络4举例谈谈用反证法说理的根本思路第七环节:布置作业【板书设计】1.1 等腰三角形三:如图,CAE是ABC的外角,ADBC且1=2求证:AB=AC证明:ADBC,1=B(两直线平行,同位角相等),2=C(两直线平行,内错角相等) 又1=2,B=CAB=AC(等角对等边)【教学反思】 第四课时【教学目的】1学问与技能理解等边三角形的判别条件与其证明,理解含有30角的直角三角形性质与其证明,并能利用这两个定理解决一些简洁的问题。2过程与方法经验运用几何符号和图形描绘命题的条件和结论的过程,建立初步的
21、符号感,开展抽象思维。3情感看法与价值观 在数学活动中获得胜利的体验,熬炼抑制困难的意志,建立自信念。【教学重点】等边三角形断定定理的发觉与证明。【教学难点】理解反证法的根本证明思路,并能简洁应用。【教学过程】教学过程教学随笔第一环节:提问问题,引入新课老师回忆前面等腰三角形的性质和断定定理的根底上,干脆提出问题:等边三角形作为一种特殊的等腰三角形,具有哪些性质呢?又如何判别一个三角形是等腰三角形呢?从而引入新课。开宗明义,引入新课,同时回忆,也为后续探究供应了铺垫。 (老师应给学生自主探究、思索的时间)第二环节:自主探究学生自主探究等腰三角形成为等边三角形的条件,并沟通汇报各自的结论,老师适
22、时要求学生给出相对标准的证明,概括出等边三角形的判别条件,并引导学生总结出下表:性质断定的条件等腰三角形含等边三角形等边对等角等角对等边“三线合一即等腰三角形顶角平分线,底边上的中线、高互相重合有一角是60等边三角形三个角都相等,且每个角都是60三个角都相等的三角形是等边三角形经验定理的探究过程,即明确有关定理,同时进步学生的自主探究实力。第三环节:实际操作 提出问题 活动内容:老师干脆提出问题:我们还学习过直角三角形,今日我们讨论一个特殊的直角三角形:含30角的直角三角形。拿出三角板,做一做:用含30角的两个三角尺,你能拼成一个怎样的三角形能拼出一个等边三角形吗在你所拼得的等边三角形中,有哪
23、些线段存在相等关系,有哪些线段存在倍数关系,你能得到什么结论?说说你的理由让学生经验拼摆三角尺的活动,发觉结论:在直角三角形中,假如一个锐角等于30,那么它所对的直角边等于斜边的一半定理:在直角三角形中,假如一个锐角等于30,那么它所对的直角边等于斜边的一半:如图,在RtABC中,C=90,BAC=30求证:BC=AB分析:从三角尺的拼摆过程中得到启发,延长BC至D,使CD=BC,连接AD证明:在ABC中,ACB=90,BAC=30B=60.延长BC至D,使CD=BC,连接AD(如下图)ACB=90ACB=90AC=AC,ABCADC(SAS)AB=AD(全等三角形的对应边相等)ABD是等边三
24、角形(有一个角是60的等腰三角形是等边三角形)BC=BD=AB第四环节:变式训练 稳固新知干脆提请学生思索刚刚命题的逆命题:在直角三角形中,假如一条直角边等于斜边的一半,那么这条直角边所对的锐角等于30吗假如是,请你证明它在师生分析的根底上,给出证明:如图,在RtABC中,C=90,BC=AB求证:BAC=30证明:延长BC至D,使CD=BC,连接AD.ACB=90,ACD=90又AC=ACACBACD(SAS)AB=ADCD=BC,BC=BD又BC=AB,AB=BDAB=AD=BD,即ABD是等边三角形B=60在RtABC中,BAC=30呈现例题,在师生分析的根底上,运用所学的新定理解答例题
25、。等腰三角形的底角为15,腰长为2a,求腰上的高CD的长.分析:视察图形可以发觉在RtADC中,AC=2a而DAC是ABC的一个外角,而DAC=15=30,根据在直角三角形中,30角所对的直角边是斜边的一半,可求出CD解:ABC=ACB=15DAC=ABC+ACB=15+15=30CD=AC=2a= a(在直角三角形中,假如一个锐角等于30,那么它所对的直角边等于斜边的一半)第五环节:畅谈收获 课时小结让学生对课堂学习进展小结,留意总结详细的学问、结论,以与解决问题的方法和蕴含其中的思想,如分类讨论思想、逆向思维等。第六环节:布置作业【板书设计】1.1 等腰三角形四:如图,在RtABC中,C=
26、90,BC=AB求证:BAC=30证明:延长BC至D,使CD=BC,连接AD.ACB=90,ACD=90又AC=ACACBACD(SAS)AB=ADCD=BC,BC=BD又BC=AB,AB=BDAB=AD=BD,即ABD是等边三角形B=60在RtABC中,BAC=30【教学反思】 1.2 直角三角形【教学目的】1学问与技能 1驾驭直角三角形的性质定理勾股定理与断定定理的证明方法,并能应用定理解决与直角三角形有关的问题。2结合详细例子理解逆命题的概念,会识别两个互逆命题,知道原命题成立,其逆命题不确定成立。2过程与方法 1进一步经验用几何符号和图形描绘命题的条件和结论的过程,建立初步的符号感,开
27、展抽象思维2进一步驾驭推理证明的方法,开展演绎推理的实力。3情感看法与价值观 体验生活中的数学的应用价值,感受数学与人类生活的亲密联络,激发学生学数学、用数学的爱好。【教学重点】驾驭直角三角形的性质定理勾股定理与断定定理的证明方法。【教学难点】 应用定理解决与直角三角形有关的问题。【教学方法】讲授法【课时支配】 2课时第一课时【教学目的】1学问与技能驾驭直角三角形的性质定理勾股定理与断定定理的证明方法。2过程与方法进一步经验用几何符号和图形描绘命题的条件和结论的过程,建立初步的符号感,开展抽象思维。3情感看法与价值观 在数学活动中获得胜利的体验,熬炼抑制困难的意志,建立自信念。【教学重点】驾驭
28、直角三角形的性质定理勾股定理与断定定理的证明方法。【教学难点】结合详细例子理解逆命题的概念,会识别两个互逆命题,知道原命题成立,其逆命题不确定成立。【教学过程】教学过程教学随笔第一环节:创设情境,引入新课通过问题1,让学生在解决问题的同时,回忆直角三角形的一般性质。问题1一个直角三角形房梁如下图,其中BCAC, BAC=30,AB=10 cm,CB1AB,B1CAC1,垂足分别是B1、C1,那么BC的长是多少 B1C1呢解:在RtABC中,CAB=30,AB=10 cm,BCAB105 cmCB1AB,B+BCB190又A+B90BCB1 A30在RtACB1中,BB1BC5 cm25 cmA
29、B1ABBB17.5(cm)在RtC1AB1中,A30B1C1 AB13.75(cm)解决这个问题,主要利用了上节课已经证明的“30角的直角三角形的性质由此提问:“一般的直角三角形具有什么样的性质呢从而引入勾股定理与其证明。教材中曾利用数方格和割补图形的方法得到了勾股定理假如利用公理与由其推导出的定理,可以证明勾股定理吗请同学们翻开课本P18,阅读“读一读,理解一下利用教科书给出的公理和推导出的定理,证明勾股定理的方法第二环节:讲解并描绘新课阅读完毕后,针对“读一读中运用的两种证明方法,着重讨论第一种,第二种方法请有爱好的同学课后阅读1勾股定理与其逆定理的证明:如图,在ABC中,C90,BCa
30、,ACb,ABc求证:a2+b2c2证明:延长CB至D,使BDb,作EBDA,并取BEc,连接ED、AE(如图),那么ABCBEDBDE90,EDa(全等三角形的对应角相等,对应边相等)四边形ACDE是直角梯形S梯形ACDE(a+b)(a+b) (a+b)2ABE180(ABCEBD)1809090,ABBESABEc2S梯形ACDESABE+SABC+SBED,(a+b) 2 c2 + ab + ab, 即a2 + ab + b2c2 + ab,a2+b2c2老师用多媒体显示勾股定理内容,用课件演示勾股定理的条件和结论,并强调详细如下:勾股定理:直角三角形两直角边的平方和等于斜边的平方反过来
31、,假如在一个三角形中,当两边的平方和等于第三边的平方时,我们曾用度量的方法得出“这个三角形是直角三角形的结论你能证明此结论吗师生共同来完成:如图:在ABC中,AB2+AC2BC2求证:ABC是直角三角形分析:要从边的关系,推出A90是不简洁的,假如能借助于ABC与一个直角三角形全等,而得到A与对应角(构造的三角形的直角)相等,可证证明:作RtABC,使A90,ABAB,AC、AC(如图),那么AB2AC2.(勾股定理)AB2AC2BC2,ABAB,ACBC2BC2BCBCABCABCSSSAA90(全等三角形的对应角相等)因此,ABC是直角三角形总结得勾股逆定理:假如三角形两边的平方和等于第三
32、边的平方,那么这个三角形是直角三角形2互逆命题和互逆定理视察上面两个命题,它们的条件和结论之间有怎样的关系在前面的学习中还有类似的命题吗通过视察,学生会发觉:上面两个定理的条件和结论互换了位置,即勾股定理的条件是第二个定理的结论,结论是第二个定理的条件这样的状况,在前面也曾遇到过例如“两直线平行,内错角相等,交换条件和结论,就得到“内错角相等,两直线平行又如“在直角三角形中,假如一个锐角等于30,那么它所对的直角边就等于斜边的一半交换此定理的条件和结论就可得“在直角三角形中,假如一条直角边等于斜边的一半,那么这条直角边所对的锐角等于30。第三环节:议一议视察下面三组命题:学生以分组讨论形式进展
33、,最终在老师的引导下得出命题与逆命题的区分与联络。让学生畅所欲言,体会逆命题与命题之间的区分与联络,要可以清晰地分别出一个命题的题设和结论,可以将一个命题写出“假如;那么的形式,以与可以写出一个命题的逆命题。活动中,老师应留意赐予适度的引导,学生假设出现语言上不严谨时,要先让这个疑问交给学生来剖析,然后再总结。活动时可以先让学生视察下面三组命题: 假如两个角是对顶角,那么它们相等假如两个角相等,那么它们是对顶角假如小明患了肺炎,那么他确定发烧假如小明发烧,那么他确定患了肺炎三角形中相等的边所对的角相等三角形中相等的角所对的边相等上面每组中两个命题的条件和结论也有类似的关系吗与同伴沟通不难发觉,
34、每组第二个命题的条件是第一个命题的结论,第二个命题的结论是第一个命题的条件在两个命题中,假如一个命题条件和结论分别是另一个命题的结论和条件,那么这两个命题称为互逆命题,其中一个命题称为另一个命题的逆命题,相对于逆命题来说,另一个就为原命题再来看“议一议中的三组命题,它们就称为互逆命题,假如称每组的第一个命题为原命题,另一个那么为逆命题请同学们推断每组原命题的真假逆命题呢在第一组中,原命题是真命题,而逆命题是假命题在第二组中,原命题是真命题,而逆命题是假命题在第三组中,原命题和逆命题都是真命题由此我们可以发觉:原命题是真命题,而逆命题不确定是真命题第四环节:想一想要写出原命题的逆命题,需先弄清晰
35、原命题的条件和结论,然后把结论变换成条件,条件变换成结论,就得到了逆命题请学生写出命题“假如两个有理数相等,那么它们的平方相等的逆命题吗它们都是真命题吗?从而引导学生思索:原命题是真命题吗逆命题确定是真命题吗 并通过详细的实例说明。假如有些命题,原命题是真命题,逆命题也是真命题,那么我们称它们为互逆定理.其中逆命题成为原命题(即原定理)的逆定理 能举例说出我们已学过的互逆定理如我们刚证过的勾股定理与其逆定理,“两直线平行,内错角相等与“内错角相等,两直线平行“全等三角形对应边相等和“三边对应相等的三角形全等、“等边对等角和“等角对等边等第五环节:随堂练习说出以下命题的逆命题,并推断每对命题的真
36、假;(1)四边形是多边形;(2)两直线平行,内旁内角互补;(3)假如ab0,那么a0, b0分析互逆命题和互逆定理的概念,学生承受起来应不会有什么困难,尤其是对以“假如那么形式给出的命题,写出其逆命题较为简洁,但对于那些不是以这种形式给出的命题,表达其逆命题有确定困难可先分析命题的条件和结论,然后写出逆命题解:(1)多边形是四边形原命题是真命题,而逆命题是假命题(2)同旁内角互补,两直线平行原命题与逆命题同为正(3)假如a0,60,那么ab0原命题是假命题,而逆命题是真命题第六环节:课时小结这节课我们理解了勾股定理与逆定理的证明方法,并结合数学和生活中的例子理解逆命题的概念,会识别两个互逆命题
37、,知道,原命题成立,其逆命题不确定成立,驾驭了证明方法,进一步开展了演绎推理实力第七环节:课后作业习题15第1、2、3、4题【板书设计】1.2 直角三角形一:如图,在ABC中,C90,BCa,ACb,ABc求证:a2+b2c2证明:延长CB至D,使BDb,作EBDA,并取BEc,连接ED、AE(如图),那么ABCBEDBDE90,EDa(全等三角形的对应角相等,对应边相等)四边形ACDE是直角梯形S梯形ACDE(a+b)(a+b) (a+b)2ABE180(ABCEBD)1809090,ABBESABEc2S梯形ACDESABE+SABC+SBED,(a+b) 2 c2 + ab + ab,
38、即a2 + ab + b2c2 + ab,a2+b2c2【教学反思】 第二课时【教学目的】1学问与技能可以证明直角三角形全等的“HL的断定定理,进一步理解证明的必要性。2过程与方法进一步经验用几何符号和图形描绘命题的条件和结论的过程,建立初步的符号感,开展抽象思维。3情感看法与价值观 进一步驾驭推理证明的方法,开展演绎推理实力。【教学重点】可以证明直角三角形全等的“HL的断定定理。【教学难点】进一步理解证明的必要性。【教学过程】教学过程教学随笔第一环节:复习提问1.推断两个三角形全等的方法有哪几种?2.一条边和斜边,求作一个直角三角形。想一想,怎么画?同学们互相沟通。3、有两边与其中一边的对角对应相等的两个三角形全等吗?假如其中一个角是直角呢?请证明你的结论。我们曾从折纸的过程中得到启示,作了等腰三角形底边上的中线或顶角的角平分线,运用公理,证明三角形全等,从而得出“等边对等角。那么我们能否通过作等腰三角形底边的高来证明“等边对等角要求学生完成,一位学生的过程如下:在ABC中, A