2022年人教版高中数学选修《排列组合问题的解题策略选讲》教案 .pdf

上传人:Che****ry 文档编号:34888793 上传时间:2022-08-19 格式:PDF 页数:17 大小:1.98MB
返回 下载 相关 举报
2022年人教版高中数学选修《排列组合问题的解题策略选讲》教案 .pdf_第1页
第1页 / 共17页
2022年人教版高中数学选修《排列组合问题的解题策略选讲》教案 .pdf_第2页
第2页 / 共17页
点击查看更多>>
资源描述

《2022年人教版高中数学选修《排列组合问题的解题策略选讲》教案 .pdf》由会员分享,可在线阅读,更多相关《2022年人教版高中数学选修《排列组合问题的解题策略选讲》教案 .pdf(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、排列组合问题的解题策略选讲普通高中实验教科书数学 选修 2-3介绍、讲解高中排列组合问题常见的四种解题策略,使学生提高这类问题的分析能力和解决能力。名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 1 页,共 17 页 - - - - - - - - - 教学内容1教学目标(1) 知识与技能目标: 掌握有关排列组合问题的解题策略,提高分析、解决问题的能力。(2) 过程与方法目标: 通过排列组合问题的解题策略的思路形成过程,让学生领悟四种解题策略的思想方法。(3) 情感、态度与价值观目标

2、:通过设问解疑,让学生感受思考的乐趣与成功的喜悦,体会数学的理性与严谨,激发学生对数学知识的热爱,养成实事求是的科学态度。2教学重点、难点(1) 重点: 排列组合问题解题策略的应用。(2) 难点: 排列组合问题解题策略的思路形成。3教学方法和手段(1) 教学方法: 采用启发式讲授法的教学方法。在教学中,我们不仅要使学生获得知识、提高解题能力, 还要让学生在教师的启发引导下学会学习、乐于学习,感受数学学科的人文思想,使学生在学习中培养坚强的意志品质、形成良好的道德情感。(2) 教学手段: 利用多媒体平台。通过多媒体平台弥补传统教学的不足,增强教学效果的直观性, 帮助学生更好地理解排列组合问题解题

3、策略的思路形成。课件精心制作、做好细节、突出重点。4教学过程(1) 复习回顾在前面的几节课,我们已经对选修2-3 的第一章计数原理进行系统地复习。说明:打出第 1 张幻灯片。图:第 1 张幻灯片片段名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 2 页,共 17 页 - - - - - - - - - 教学内容说明:由于这些内容前面已经系统地复习了,所以简单扼要地叙述上面幻灯片的内容,主要是帮助学生回忆前几节课的内容。虽然复习巩固了,但同学们反映还是有很多题目不会做或做错。为什么呢?

4、计数问题中,排列组合问题是最常见的。其特点是条件隐晦,不易挖掘,题目多变,解法独特。有的题目的解法往往是构造性的,方法灵活、多样,不同解法导致问题难易变化也较大。而且解题过程出现“重复”和“遗漏”的错误较难自检发现。所以面对这一类问题,同学们往往就会束手无策了。(2) 创设问题在这一类问题中,我们以如下几个问题作为典例进行研究。说明:打出第 2 张幻灯片。图:第 2 张幻灯片片段说明:问题逐个打出,读题。让学生对问题有个印象,提醒学生不要忙于解答,后面我们将会一一解答。上面所列的这几个问题,在高中阶段属于比较常见的类型。因而对这些问题归纳总结,并掌握一些在高中比较常用的解题策略是必要的。(3)

5、 思考探究在讲解解题策略之前, 我还得请同学们和我一起来弄清楚下面两个思考题,这将使得我们能更好的理解排列组合问题,正所谓知己知彼,方能百战百胜。思考 1:排列和组合的区别是什么?很多学生都会按照课本的概念,认为涉及顺序的是排列问题,没有顺序的是组合问题,名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 3 页,共 17 页 - - - - - - - - - 教学内容实际上这使得我们的思维出现很大程度的模糊。因为究竟什么才是有顺序, 怎么理解有顺序呢?既然这样我们又该如何理解排列和组

6、合的区别呢?我们先看几个例子。说明:打出第 3 张幻灯片。图:第 3 张幻灯片片段说明:上面四个例子打出顺序为和、。在和这两个例子从字面上看出有顺序吗?在中,学生认为“第一组”和“第二组”是不同的,所以有顺序。因此均等分组后应该再排列,即方法数是224222CAAg。那么的方法数就应该是2422CA。虽然没有明显的顺序关系, 但是学生可以从 “位置是否可区分” 来判断问题到底是有没有顺序的。当学生看到时,会很快给出33A这个答案,因为中出现了“3个不同位置”的字眼。按照这样的理解那么的答案也就是33A了?虽然我们还不至于犯这样的错误,但是我们的判断依据是什么呢?我们的判断依据是“元素是否可区分

7、”。于是,我们可以得到一个结论:问题中所涉及的元素和位置都具有可区分性的,属于排列问题,否则是组合问题。说明:结论在第 3 张幻灯片的底部打出。这样一来,排列组合的区别就更加明了,我们解题的思维方式也就更加清晰了。名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 4 页,共 17 页 - - - - - - - - - 教学内容思考 2:符号knA的含义是什么?符号knA是指排列数,实际上这个符号限制着我们的思维方式。它的含义是指在n 个元素中取出k个元素进行排列。说明:打出第 4 张

8、幻灯片。图:第 4 张幻灯片片段在这个例子中,我们可以先从6 人中取出 3 人,有36C种情况,再将 3 人分配到 3 个职位,有33A种情况,所以不同的选法为333636CAAg种。也就是说knA其中包含了两层意思,一层是在n 个元素中取出 k 个元素,另一层是再将这取出的 k 个元素进行全排列,即kkknnkACAg。实际上knA是将两个思维过程串在一起,这使得我们做较为难一点的题的时候,经常会思维混乱。于是,我们可以得到一个结论:所有的排列问题都遵循“先取后排”的原则,用kknkCAg代替knA更有利于解决较难的问题。说明:结论在第 4 张幻灯片的底部打出。这个结论有利于解放思维,有利于

9、我们对问题的思考。(4) 展开课题理解这两个思考题之后, 我们就带着前面的四个问题, 来对排列组合问题的一些常见解题策略进行学习。名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 5 页,共 17 页 - - - - - - - - - 教学内容策略 1插空策略插空策略可以解决元素不相邻的问题。说明:打出第 5 张幻灯片,先打出插空策略的说明。图:第 5 张幻灯片片段这类问题可把没有位置要求的元素进行排队,再把要求不相邻的元素插入中间和两端。说明:打出第 5 张幻灯片的插空策略的模型进

10、行解释。有两个元素要求不相邻, 那么把其余四个元素先排好, 再把这两个元素插入其余四个元素的中间和两端。幻灯片中动画演示不相邻的两个元素的插空过程。接下来,我们来看一道例题。说明:打出第 6 张幻灯片,先打出例题。图:第 6 张幻灯片片段要使得甲乙不相邻,我们只要先排好其余5 个人,然后在这 5 个人的间隙以及两端的6个位置选两个插入甲乙,这样甲乙自然就不相邻了。名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 6 页,共 17 页 - - - - - - - - - 教学内容说明:引

11、导学生根据模型对例题进行分析,进而加以肯定,打出例题的解答过程。并提出问题,在第 2 步中为什么是26A而不是26C呢?因为解决这个问题能使得更多的学生明白何为排列何为组合,那么课前的两个思考探究的作用就更加明显了。在第 2 步中,其中的26A可以解释为 6 个位置选两个为26C,因为甲乙是可区分的,所以应该再乘上22A,即222626CAAg。解答完例题后,对插空策略进行总结:几个元素不能相邻时,先排一般元素,再让特殊元素按照要求进行插空。说明:总结在第 6 张幻灯片的底部打出。前面我们提到的问题中,有一个就是“元素不相邻”的,下面把这个问题当成一道练习题,请同学们来完成。说明:打出第 7

12、张幻灯片,先打出练习题。图:第 7 张幻灯片片段引导学生将此问题等价为在七盏亮着的路灯的6 个间隙中插入三盏关闭的路灯。说明:提问后再进行分析。打出分析过程。幻灯片动画演示这个插入的过程。可能有学生会认为答案是36A,根据前面的思考探究, 由于关闭的路灯是不可区分的,所以应该是36C。在这个练习中,我们要注意考察问题中的条件,运用插空策略。先排一般元素,再让特殊元素按照要求进行插空,同学们在平时的练习中要多加观摩揣意。策略 2捆绑策略捆绑策略可以解决元素相邻的排列问题。名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理

13、 - - - - - - - 第 7 页,共 17 页 - - - - - - - - - 教学内容说明:打出第 8 张幻灯片,先打出捆绑策略的说明。图:第 8 张幻灯片片段对于这类问题可采用“局部到整体”的排法,即先把相邻元素局部先排列,然后当成一个元素,再与其他元素整体排列。说明:打出前面我们提到的问题2, 以及捆绑策略的模型进行解释。有一对双胞胎要求相邻,那么把这一对双胞胎“捆绑”在一起(局部排列),幻灯片中动画演示“捆绑”后放到其他元素中进行排列(整体排列)的过程。这样问题2 的答案明显就是2525240AAg了。下面,我们同样通过一道例题进行融会贯通。说明:打出第 9 张幻灯片,先打

14、出例题。图:第 9 张幻灯片片段甲乙丙要相邻,我们可以先把甲乙丙排在一起(捆绑),然后把甲乙丙的排列当成一个名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 8 页,共 17 页 - - - - - - - - - 教学内容元素再与其它的元素进行排列。说明:引导学生进行分析,进而加以肯定,打出例题的解答过程。解答完例题后,对捆绑策略进行总结:几个元素必须相邻时,先按照要求把它们捆绑成一个元素,再与其它的元素进行排列。说明:总结在第 9 张幻灯片的底部打出。策略 3剪串策略剪串策略可以解

15、决“将n 个相同的元素分到k 个不同的容器( n k), 每个容器至少一个元素”的这类问题。说明:打出第 10 张幻灯片,先打出剪串策略的说明。图:第 10 张幻灯片片段将 n 个相同的元素分到k 个不同的容器( nk), 每个容器至少一个元素 , 可以将 n 个相同的元素串成一串, 在这一串的 n-1 个空隙中选 k-1 个位置,剪断后自然就分成了k 份,元素是不可区分的,属于组合问题,所以共有11knC种。特别提醒学生要注意“元素必须是相同的”才能符合剪串策略。说明:打出前面所提的问题3,用模型进行解释。把足球看成是“珠子”串在一起,幻灯片中动画演示四把剪刀从19 个间隙中的任意选四个进行

16、剪断的过程。那么通过模型的解释,问题 3 的答案明显就是419C了。名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 9 页,共 17 页 - - - - - - - - - 教学内容我们也同样通过一道例题再加以理解。说明:打出第 11 张幻灯片,先打出例题。图:第 11 张幻灯片片段因为是方程的正整数解,所以也就是把200 个“1”分给12320,x xxxL,至少分一个。即把 200个相同的元素分到20 个不同的容器,每个容器至少一个元素,符合剪串策略。说明:引导、启发学生进行对问

17、题进行分析、转化。打出例题的解答过程。解答完例题后, 对剪串策略进行总结: 将 n 个相同的元素分到k 个不同的容器(n k) ,每个容器至少有一个元素的方法数为11knC种。说明:总结在第 11 张幻灯片的底部打出。4等机会策略等机会策略可以解决元素顺序固定的排列问题。说明:打出第 12 张幻灯片,先打出等机会策略的说明。图:第 12 张幻灯片片段名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 10 页,共 17 页 - - - - - - - - - 教学内容解决元素顺序固定的排

18、列问题,先把所有元素一起排列,因为每一个排列的机会相等,所以在所有元素的全排列中,只有几分之几是满足元素顺序固定的排列种数。说明:打出前面所提到的问题4。九位领导的就座方法总数是99A,其中包括了校长坐在 1、2、3 和 7、8、9 位置的情况,用模型进行解释。由于每一个排列的机会相等,那么校长坐在中间三个位置的概率就是13,通过模型的解释, 问题变得简单明了, 答案9913A便是无可厚非的了。下面我们再来看一道相关的例题。说明:打出第 13 张幻灯片的例题部分。图:第 13 张幻灯片片段先把 7 个人全部进行排列有77A种,甲乙丙 3 人的排法有33A种,甲乙丙顺序一定只是其中的一种,所以满

19、足条件的排法只占所有排法的331A。说明:引导、启发学生进行分析,进而加以肯定,打出例题的解答过程。解答完例题后,对等机会策略进行总结:几个元素顺序一定时,先把所有元素进行排列,再乘以顺序固定占总数中的几分之几。说明:总结在第 13 张幻灯片的底部打出。(5) 练习作业以上的四种策略是高中最为常见的,希望同学们能够熟悉掌握。 下面我们再通过几个练习题,来帮助同学们理解、加强这些策略。说明:打出第 14 张幻灯片,先打出练习2。名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 11 页,

20、共 17 页 - - - - - - - - - 教学内容图:第 14 张幻灯片片段说明:练习打出后,很快就有学生在嘀咕了。此时提问,直到问到答案43 为止。加以分析,打出答案和变式1。变式 1 和剪串策略的模式比较接近,可能有的学生会给出3 14 1C这样的答案。 提示学生注意“4 封不同的信”和剪串策略中的“n 个相同的元素”是不同的。说明:很快有学生就想到了捆绑策略了。此时提问,得到正解。加以分析,打出答案和变式 2,至此答案为3 14 1C就不言而喻了。做完练习 2 之后,进行总结: 解题时 , 一定要注意题目的条件,选取合适的解题策略来解决问题,不要盲目地套用某种解题策略。说明:总结

21、在第 14 张幻灯片的底部打出。好,我们再看下面的练习。说明:打出第 15 张幻灯片,先打出练习3、4、5。图:第 15 张幻灯片片段经过一节课的学习和总结, 效果相当明显, 全班同学们几乎都在很短的时间内就判断出这三个练习分别属于插空、捆绑和等机会策略了。说明:提问得到正确答案,打出正解。布置作业,在第15张幻灯片底部打出。名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 12 页,共 17 页 - - - - - - - - - 教学内容(6) 课题小结本课题,我们对有关排列组合的

22、几种常见的解题策略加以讲解。具体有:插空策略不相邻问题;捆绑策略相邻问题;剪串策略相同元素至少一个的分发问题;等机会策略位置、顺序固定的问题。解题时要根据题目的条件, 选取适当的策略来解决问题。把复杂的问题简单化, 懂得举一反三,触类旁通 , 观摩揣意 , 不要盲目地套用某种解题策略。本课题到此结束,谢谢大家。5板书设计排列组合问题的解题策略选讲1. 复习回顾2. 思考探究 1 )排列和组合的区别是什么?2)符号knA的含义是什么?3. 排列组合问题的解题策略1)插空策略 : 不相邻问题2)捆绑策略 : 相邻问题3)剪串策略 : 相同元素的分发问题4)等机会策略 : 顺序固定的问题4. 小结5

23、. 作业可擦除区域例题、练习的讲解思路,演算或者答案可写在这个区域6教学反思一个策略的形成是螺旋式上升的,对策略的理解不仅是对结果的理解,更是对方法和过程的理解。 本课题设计上, 把数学知识的“学术形态”转化为数学课堂的“教学形态”,返璞归真。从四个问题,两个思考探究出发,设问解疑,引导学生进入本课题的中心。教师作为学生学习的组织者、引导者、合作者应因材施教,选择适当的教学方法。本课题虽然采用比较传统的讲授法,但教学过程中采用启发式的追问方式,引导学生进行思考,给学生说话的机会,收集知识误区,及时更正,启发学生对问题进行分析解答,然后从全体学生中提取结论, 实际教师也就是在对来源于学生的观点加

24、以修正和总结。体现了以学生的发展为本的教学理念。教的秘诀在于度,学的真谛在于悟,只有学生真正理解了,才能举一反三、融会贯通。教学中重过程、多交流,因材施教、尊重差异,促进了个性化学习,更好地实现了教学目标。 排列、组合问题大都来源于生活和学习中所熟悉的情景,解题思路通常是依据具体做事的过程,用数学的原理和语言加以表述。名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 13 页,共 17 页 - - - - - - - - - 教学内容排列组合问题的解题策略选讲教案说明揭阳揭东县地都中学

25、郑维宝数学是发展学生思维、 培养学生良好意志品质和美好情感的重要学科,在教学中,我们不仅要使学生获得知识、 提高解题能力, 还要让学生在教师的启发引导下学会学习、乐于学习,感受数学学科的人文思想, 使学生在学习中培养坚强的意志品质、形成良好的道德情感。本课题虽然采用比较传统的讲授法,但教学过程中采用启发式的追问方式,引导学生进行思考,给学生说话的机会,收集知识误区,及时更正,启发学生对问题进行分析解答,然后从全体学生中提取结论, 实际教师也就是在对来源于学生的观点加以修正和总结。体现了以学生的发展为本的教学理念。教的秘诀在于度,学的真谛在于悟,只有学生真正理解了,才能举一反三、融会贯通。教学中

26、重过程、多交流,因材施教、尊重差异,促进了个性化学习,更好地实现了教学目标。为了更好地体现课堂教学中“教师为主导,学生为主体”的教学关系和“以人为本,以学定教”的教学理念,在本课题的教学过程中,我将紧紧围绕“教师组织,启发引导,学生思考,教师总结”启发式教学模型进行教学。 让学生在策略模型中, 经历知识的形成和发展,通过观察、思考、归纳、反思参与学习,认识和理解排列组合问题的解题策略。在教学中注意过程和关注全体学生,充分调动学生积极参与教学过程的每个环节。利用多媒体平台,通过多媒体平台弥补传统教学的不足,增强教学效果的直观性。本课题设计了六个环节,环环相扣、层层深入。各个环节的安排和关系如下图

27、所示。名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 14 页,共 17 页 - - - - - - - - - 教学内容下表对教学过程再进行补充和说明。环节活动内容设 计 意 图复习回顾简单扼要地叙述与排列组合有关的内容。这些内容前几节课,已经系统复习了,故不要太详细。引导学生回忆知识, 课前热身,引入课题。创设问题问题 1: 有编号的十盏路灯 , 为了节能要关掉彼此不相邻的三盏, 且两端的路灯不能关闭,有多少种关闭路灯的方法?问题 2:6 个人排队,其中一对双胞胎要站在一起,有多

28、少种排队的方法?问题 3:将 20个足球分给 5 个班级,每班级至少分到一个足球的分法有多少种?问题 4:毕业合影,前排九个位置由九位领导就座,正校长只能坐在中间三个位置的坐法有多少种?重现学生经常做错的类型题目,激发学生的求知欲望。思考探究思考 1:排列和组合的区别是什么?探究模式: 举例分析得出结论结论:问题中所涉及的元素和位置都具有可区分性的,属于排列问题,否则是组合问题。思考 2:符号knA的含义是什么?探究模式: 举例分析得出结论结论:所有的排列问题都遵循 “先取后排”的原则,用kknkCAg代替knA更有利于解决较难的问题。思考 1:很多学生都会按照课本的概念,认为涉及顺序的是排列

29、问题, 没有顺序的是组合问题,那么究竟什么才是有顺序,怎么理解有顺序呢?思考 2:knA是将两个思维过程串在一起,一是在 n 个元素中取出 k 个元素,一是将这取出的 k 个元素进行全排列,即kkknnkACAg,这使得我们做较为难一点的题的时候,经常会思维混乱。两个思考探究作为下面课题中心的指导思想,使学生能更容易地理解解题策略。名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 15 页,共 17 页 - - - - - - - - - 教学内容(续上表)展开课题排列组合问题的解题策

30、略:1插空策略模型例题结论2捆绑策略模型例题结论3剪串策略模型例题结论4等机会策略模型例题结论模式: 策略可解决什么问题启发学生怎么解决为什么可以这样解决(动画模型进行解释)如何应用(例题)启发学生如何求解策略结论。介绍高中解决排列组合问题常用的四种策略。弄清他们分别解决什么问题?如何解决?每个策略一个例题,现学现用。设计课件,动画模型,可以更形象的理解各个策略模型,突破“排列组合问题解题策略的思路形成”这一难点。练习作业练习 1:插空策略的应用。此练习放在插空策略的例题之后。练习 2、变式 1、变式 2:乘法原理、捆绑策略、剪串策略的应用。练习 3:插空策略的应用。练习 4:捆绑策略的应用。

31、练习 5:等机会策略的应用。课外练习布置:课辅资料金榜1 号活页本 12-4。通过几个练习题,帮助学生理解、加强高中解决排列组合问题常用的四种策略。解题时要根据题目的条件, 选取适当的策略来解决问题。把复杂的问题简单化,懂得举一反三, 触类旁通 , 观摩揣意 , 不要盲目地套用某种解题策略。布置课外作业,加深巩固。课题小结插空策略不相邻问题捆绑策略相邻问题转化策略抽象、复杂的问题剪串策略相同元素至少一个的分发问题等机会策略位置、顺序固定的问题培养学生对所学知识进行概括归纳的能力,巩固所学知识。名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 16 页,共 17 页 - - - - - - - - - 名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 17 页,共 17 页 - - - - - - - - -

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 高考资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁