2022年2022年集合的含义及其表示——教案 .pdf

上传人:Che****ry 文档编号:34878541 上传时间:2022-08-19 格式:PDF 页数:8 大小:122.11KB
返回 下载 相关 举报
2022年2022年集合的含义及其表示——教案 .pdf_第1页
第1页 / 共8页
2022年2022年集合的含义及其表示——教案 .pdf_第2页
第2页 / 共8页
点击查看更多>>
资源描述

《2022年2022年集合的含义及其表示——教案 .pdf》由会员分享,可在线阅读,更多相关《2022年2022年集合的含义及其表示——教案 .pdf(8页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、1 第一课时集合集合的概念教学目的:(1)使学生初步理解集合的概念,知道常用数集的概念及记法(2)使学生初步了解“属于”关系的意义(3)使学生初步了解有限集、无限集、空集的意义教学重点: 集合的基本概念及表示方法教学难点: 运用集合的两种常用表示方法列举法与描述法,正确表示一些简单的集合授课类型: 新授课课时安排: 1 课时罗华的手稿1831 年 1月伽罗华在教具:多媒体个结论,他写成论文提交给法国科、实物投影仪内容分析:1集合是中学数已证明的一个结果可以表明伽罗华学的一个重要的基本概念在小学数学中,就渗透了集合的初步概念,到了初议科学院否定它1832 年 5 月 30日中,更进一步应用集合的

2、语言表述一些问题例如,在代数中用到的有数集、解忙写成后,委托他的朋友薛伐里叶集等;在几何中用到的有点集至于逻辑,可以说,从开始学习数学就离不开对造福人类1832 年 5 月 31 日离开了逻辑知识的掌握和运用,基本的逻辑知识在日常生活、学习、工作中,也是认识,他死后14 年,法国数学家刘维问题、研究问题不可缺少的工具这些可以帮助学生认识学习本章的意义,也是于刘维尔主编的数学杂志上本章学习的基础把集合的初步知识与简易逻辑知识安排在高中数学的最开始,是因为在高中数学中,这些知识与其他内容有着密切联系,它们是学习、掌握和使用数学语言的基础 例如,下一章讲函数的概念与性质,就离不开集合与逻辑本节首先从

3、初中代数与几何涉及的集合实例入手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明然后,介绍了集合的常用表示方法,包括列举法、描述法,还给出了画图表示集合的例子这节课主要学习全章的引言和集合的基本概念学习引言是引发学生的学习兴趣,使学生认识学习本章的意义本节课的教学重点是集合的基本概念集合是集合论中的原始的、不定义的概念在开始接触集合的概念时,主要还是通过实例,对概念有一个初步认识教科书给出的“一般地,某些指定的对象集在一起就成为一个集合,也简称集”这句话,只是对集合概念的描述性说明教学过程:一、复习引入:1简介数集的发展,复习最大公约数和最小公倍数,质数与和数;2教材中的章头引言

4、;3集合论的创始人康托尔(德国数学家)(见附录);4“物以类聚”,“人以群分”;名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 1 页,共 8 页 - - - - - - - - - 2 5教材中例子(P4)二、讲解新课:阅读教材第一部分,问题如下:(1)有那些概念?是如何定义的?(2)有那些符号?是如何表示的?(3)集合中元素的特性是什么?(一)集合的有关概念:由一些数、一些点、一些图形、一些整式、一些物体、一些人组成的.我们说,每一组对象的全体形成一个集合,或者说,某些指定的对象

5、集在一起就成为一个 集合 ,也简称 集.集合中的每个对象叫做这个集合的元素. 定义: 一般地,某些指定的对象集在一起就成为一个集合1、集合的概念(1)集合:某些指定的对象集在一起就形成一个集合(简称集)(2)元素:集合中每个对象叫做这个集合的元素(3)元素对于集合的隶属关系(4)集合中元素的特性确定性 :按照明确的判断标准给定一个元素或者在这个集合里,或者不在,不能模棱两可在时称属于,即a 是集合 A 的元素,就说a 属于 A,记作 aA 集合通常用大写的拉丁字母表示,如A、B、C、P、Q元素通常用小写的拉丁字母表示,如 a、b、c、p、q“”的开口方向,不能把aA 颠倒过来写不在时称,不属于

6、:如果a 不是集合A 的元素,就说a 不属于A,记作Aa互异性 :集合中的元素没有重复无序性 :集合中的元素没有一定的顺序(通常用正常的顺序写出)2、集合的表示方法:(1)列举法:在大括号内将集合中的元素一个个列举出来,元素之间用逗号隔开,具体又分以下三种情况:元素个数少且有限时,全部列举;如1,2,3 元素个数多且有限时,可以列举部分,中间用省略号表示,列举几个元素,取决于能否普遍看出其规律,称中间省略列举。如“所有从1 到 10000 的自然数全体”可以表示为1,2,3, 10000 ;三是当元素个数无限但有规律时,也可以用类似的省略号列举,如:自然数构成的集合,可以表示为0,1,2,3,

7、4, ,称端省略列举。描述法它又可细分为文字描述及属性描述法两类:前者是在大括号内用文字写出集合的属性,由于括号本身含有了“所有”、“全部”的意义,故类似的量词要去掉,名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 2 页,共 8 页 - - - - - - - - - 3 如:全体自然数构成的集合写成自然数 而不写成 全体自然数 :特征描述法是集合中最广泛、最抽象的一种表示方法,其格式一般为 元素的一般形式|元素的特征,如: (x,y)|y=x2,xR= 抛物线 y=x2上的点 ,

8、而y|y=x2,xR 表示函 y=x2的y 的取值范围;方程x2-1=0 的解集为 x|x2-1=0=-1,1,不是 x2-1=0 (它仅仅是用列举法表示的一个集合,这个集合中只有一个元素,就是方程x2-1=0,不是它解的集合。(3)图示法一是一维数轴表示,如初中阶段所学的不等式解集表示方法,其原理是数轴的定义与数轴上的点与实数一一对应;二是直角坐标表示,如 (x,y)|y=x2; 三是Venn 图,即画个圆圈表示集合(有的书上称文氏兔、文斯图);(4)符号表示法分为简记符号法及区间表示法:常用数集及记法非负整数集 (自然数集):全体非负整数的集合记作 N,,2, 1 ,0N正整数集 :非负整

9、数集内排除0的集 记作 N*或 N+, 3, 2, 1*N整数集 :全体整数的集合记作 Z , ,210Z有理数集 :全体有理数的集合记作 Q , 整数与分数Q实数集 :全体实数的集合记作 R 数数轴上所有点所对应的R不含任何元素的集合称空集,符号为注: (1)自然数集与非负整数集是相同的,也就是说,自然数集包括数 0(2)非负整数集内排除0 的集记作 N*或 N+Q、Z、R 等其它数集内排除0 的集,也是这样表示,例如,整数集内排除0 的集,表示成Z* 3,集合的分类:按元素的个数分作无限个)无限集(元素的个数有限个,含有空集)有限集(元素的个数有三、练习题:1、下列各组对象能确定一个集合吗

10、?(1)所有很大的实数(不确定)(2)好心的人(不确定)名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 3 页,共 8 页 - - - - - - - - - 4 (3)1,2,2,3,4,5 (有重复)2、设 a,b 是非零实数,那么bbaa可能取的值组成集合的元素是_-2,0,2_3、由实数x,x,x,332,xx所组成的集合,最多含(A )(A)2 个元素(B)3 个元素(C)4 个元素(D)5 个元素4、设集合G 中的元素是所有形如ab2(aZ, bZ)的数,求证:(1) 当

11、 xN 时, xG; (2) 若 xG,yG,则 xyG,而x1不一定属于集合G证明 (1):在 ab2(aZ, bZ)中,令a=xN,b=0, 则 x= x0*2= ab2G,即 xG 证明 (2):xG,yG,x= ab2(aZ, bZ),y= cd2(cZ, dZ)x+y=( ab2)+( cd2)=(a+c)+(b+d)2aZ, bZ,cZ, dZ (a+c) Z, (b+d) Z x+y =(a+c)+(b+d)2G,又211bax2222222babbaa且22222,2babbaa不一定都是整数,211bax2222222babbaa不一定属于集合G四、小结: 本节课学习了以下内

12、容:1集合的有关概念:确定性,互异性,无序性名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 4 页,共 8 页 - - - - - - - - - 5 2集合的表示符号表示法图示法描述法列举法五、课后作业 :教材 P7_15第二课时集合表示法的转换教学目的:(1)进一步理解集合的有关概念,熟记常用数集的概念及记法(2)使学生初步了解有限集、无限集、空集的意义(3)会运用集合的两种常用表示方法教学重点: 集合的表示方法教学难点: 运用集合的列举法与描述法,正确表示一些简单的集合授课类型

13、: 新授课课时安排: 1 课时教学过程:一、复习引入:上节所学集合的有关概念1、集合的概念集合 :某些指定的对象集在一起就形成一个集合集合具有(1)确定性 :按照明确的判断标准给定一个元素或者在这个集合里,或者不在,不能模棱两可(2)互异性 :集合中的元素没有重复(3)无序性 :集合中的元素没有一定的顺序(通常用正常的顺序写出)2、集合的表示方法及空集)符号表示法(常用数集图表示)坐标、图示法(含数轴、直角特征描述)描述法(含文字描述及列举)中间省略列举、端省略列举法(含全部列举、Venn二,新课1,其实,在符号表示法中还有一种方法区间表示法集合区间读法x|axb (a,b) 开区间 a 到

14、b 名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 5 页,共 8 页 - - - - - - - - - 6 x|ax b ba,半开半闭区间a到 b x|axb a,b 闭区间 a 到 b x|xa (-, a) 开区间负无穷到a x|a xb ba,半开半闭区间a到 b x|x b , b半闭半开区间b 到正无穷2,同一集合不同的表示方法是相同的,具体解题时,这些表示方法中,将难于看出元素是什么的转化为能够看出的,这样有:图示法直观化符号表示法属性描述法文字描述法具体化列举法简

15、单化熟悉化数学解题的关键也是这“四化”3,典型例题例 1、已知集合A=a-2,2a2+5a,10, 且-3A,求 a 解: a-2=-3 或 2a2+5a=-3 故 a=-1 或 a=-3/2 当 a=-1 时, 2a2+5a=a-2=-3 与集合的互异性矛盾,舍去当 a=-3/2 时,满足条件总之, a=-3/2 说明 由于解题过程中用到了不等价变形,所以要进行检验例 2、已知集合 1,a,b=a,a2,ab,求实数 a,b 解方法一 0)1(.10) 1)(1(1322baababbaaabab因 a1 故 a=-1,b=0 方法二 由已知baba12或12abbaa1 a= -1,b=0

16、 练习: m,m+d,m+2d=m,mq,mq2,求 q (答案: q=-1/2 )例 3,已知集合A=x|(a2-1)x2+(a+1)x+1=0,x R 中仅有一个元素,求实数a的值解:本题分两类进行名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 6 页,共 8 页 - - - - - - - - - 7 当 a2-1=0 时,a=1 或 a=-1; 当 a=1 时, A=x|2x+1=0=-1/2,满足条件;当a=-1 时,A=,舍去。当 a2- 10 时,a 1 且 a-1 ,

17、=0, a=5/3 总之, a=5/3 或 1 例 4,已知S 是满足下列两个条件的实数构成的集合:1S;若aS,则a11S. 请回答下列问题若 2S,求证S 必有另外两个数;求证,若aS,则1-a1S; S 中元素能否只有一个?说明理由;求证:S中至少有三个不同的元素解2S211=-1S)1(11=1/2S2111=2S,S 中必有另外两个数 -1,1/2 证明: aSa11Sa1111=aa1=1-a1S假设S 中元素只有一个,则a11=a,a2-a+1=0 有实数解,与a2-a+1=0 没有实数解矛盾,故S中的元不能只有一个由S中,至少有a, a11,1-a1三个不同的元,只要证明三者两

18、两不等。假设 1-a1=a11,有 a2-a+1=0 但它没有实数解,矛盾。同理,三者两两不等,从而 S中至少有三个不同的元素4,总结:本节主要在符号表示法上又加了区间表示的概念,同时,集合表示法之间的转化体现了数学解题的四大原则性思想作业:见补充习题名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 7 页,共 8 页 - - - - - - - - - 8 名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 8 页,共 8 页 - - - - - - - - -

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 高考资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁