《2022年2022年国开放大学离散数学本离散数学作业答案 .pdf》由会员分享,可在线阅读,更多相关《2022年2022年国开放大学离散数学本离散数学作业答案 .pdf(4页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、离散数学作业2 离散数学集合论部分形成性考核书面作业本课程形成性考核书面作业共3 次,内容主要分别是集合论部分、图论部分、数理逻辑部分的综合练习,基本上是按照考试的题型(除单项选择题外)安排练习题目,目的是通过综合性书面作业,使同学自己检验学习成果,找出掌握的薄弱知识点,重点复习,争取尽快掌握本次形考书面作业是第一次作业,大家要认真及时地完成集合论部分的综合练习作业要求: 学生提交作业有以下三种方式可供选择:1. 可将此次作业用A4纸打印出来,手工书写答题,字迹工整,解答题要有解答过程,完成作业后交给辅导教师批阅2. 在线提交 word 文档3. 自备答题纸张,将答题过程手工书写,并拍照上传一
2、、填空题 1设集合1, 2, 3,1, 2AB,则P(A)-P(B )= 1,2,2,3 ,1,3 ,1,2,3 ,A B= , , 2设集合A有 10 个元素,那么A的幂集合P(A)的元素个数为 1024 3设集合A=0, 1, 2, 3,B=2, 3, 4, 5,R是A到B的二元关系,则R的有序对集合为 , 4设集合A=1, 2, 3, 4 ,B=6, 8, 12,A到B的二元关系R,2,ByAxxyyx那么R1 , 5设集合A=a, b, c, d,A上的二元关系R=, , , ,则R具有的性质是反自反性6设集合A=a, b, c, d,A上的二元关系R=, , , ,若在R中再增加两个
3、元素 , ,则新得到的关系就具有对称性7 如果R1和R2是A上的自反关系, 则R1R2,R1R2,R1-R2中自反关系有 2 个8设A=1, 2上的二元关系为R=|xA,yA, x+y =10,则R的自反姓名:学号:得分:教师签名:名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 1 页,共 4 页 - - - - - - - - - 闭包为 ,2,2 9设R是集合A上的等价关系,且1 , 2 , 3是A中的元素,则R中至少包含 , 等元素10设A=1 ,2 ,B=a,b ,C=3,4
4、,5 ,从A到B的函数f =, ,从B到C的函数g=, ,则 Ran(g f)= , or , 二、判断说明题 (判断下列各题,并说明理由)1若集合A = 1 ,2,3上的二元关系R= , , ,则(1) R是自反的关系; (2) R是对称的关系解: (1) 结论不成立因为关系 R要成为自反的,其中缺少元素 (2) 结论不成立因为关系 R中缺少元素 2设A=1,2,3 ,R=, , , ,则R是等价关系不是等价关系。因为3 是 A的一个元素,但 不在关系 R中。等价关系R必须有:对 A中任意元素 a, R 含 3若偏序集 的哈斯图如图一所示,则集合A的最大元为a,最小元不存在错误,按照定义,图
5、中不存在最大元和最小元 4设集合A=1, 2, 3, 4,B=2, 4, 6, 8,判断下列关系f是否构成函数f:BA,并说明理由(1) f=, , , ; (2) f=, , ;(3) f =, , , (1) 不构成函数,因为它的定义域Dom(f) A (2) 也不构成函数,因为它的定义域Dom(f) A (3) 构成函数, 首先它的定义域Dom(f)=1,2,3,4=A,其次对于 A中的每一个元素 a,在 B中都有一个唯一的元素b,使 f 三、计算题1设4,2,5,2, 1,4, 1,5,4, 3,2,1CBAE,求:(1) (AB)C; (2) (AB)-(BA) (3) P(A) P
6、(C) ; (4) AB解: (1) (AB)C=11,3,5=1 ,3,5 (2) (AB)- (BA)=1,2,4,5-1=2,4,5 (3) P(A)P(C)= , 1 ,4 ,1 ,4 ,2 ,4 ,2 ,4 =1 ,1 ,4 (4) AB=(A-B) (B-A)=42,5=2 ,4,5 2设 A=1,2,1,2,B=1,2,1,2,试计算(1)( AB);(2)( AB);(3)ABa b c d 图一g e f h 名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 2 页,
7、共 4 页 - - - - - - - - - 解(1)( AB)= 1,2 (2)( AB)= 1,2(3) AB = 1 ,1, 1 ,2,3设A=1 ,2,3,4,5,R=|xA,yA且x+y4 ,S=|xA,yA且x+y0,试求R,S,RS,SR,R-1,S-1,r(S),s(R)解:R=1,1, 1,2, 1,3, 2,1, 2,2, 3,1 ,S=RS=SR=R-1=1,1, 2,1, 3,1, 1,2, 2,2, 1,3 S-1=r(S)= 1,1, 2,2, 3,3, 4,4, 5,5 s(R)= 1,1, 1,2, 1,3, 2,1, 2,2, 3,1 4设A=1, 2, 3
8、, 4, 5, 6, 7, 8,R是A上的整除关系,B=2, 4, 6(1) 写出关系R的表示式; (2 )画出关系R的哈斯图; (3) 求出集合 B的最大元、最小元解: (1) R=1,1, 1,2, 1,3, 1,4, 1,5, 1,6,1,7, 1,8, 2,2, 2,4, 2,6, 2,8, 3,3,3,6, 4,4, 4,8, 5,5, 6,6, 7,7, 8,8 (2 ) 关系 R的哈斯图(3) 集合 B的没有最大元,最小元是2四、证明题 1试证明集合等式: A ( BC )=( AB ) (AC )1 5 6 3 7 4 8 2 名师资料总结 - - -精品资料欢迎下载 - -
9、- - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 3 页,共 4 页 - - - - - - - - - 证明:设任意xA (BC) ,那么xA或x BC,也就是xA或xB,且xA或xC;由此得x AB且xAC,即x (AB) (AC) 所以, A (BC) (AB) (AC)又因为对任意x(AB) (AC),由xAB且x AC,也就是xA或xB,且xA或xC;得xA或x BC,即xA (BC) 所以, (AB) (AC) A (BC)故A (BC)=(AB) (AC) 2试证明集合等式A ( BC )=( AB ) (AC ) 证明
10、:设 S=A(BC),T=(AB)(AC),若 xS,则 xA且 xBC,即 xA且 xB或 xA且 xC,也即 xAB或 xAC,即 xT,所以 ST反之,若 xT,则 xAB或 xAC ,即 xA 且 xB或 xA且 xC 也即 xA且 xBC,即 xS,所以 TS因此 T=S 3对任意三个集合A, B和C,试证明:若A B= A C,且A,则B= C证明:(1)对于任意 a,bA B,其中 aA,bB,因为A B= A C,必有 a,bA C,其中 bC,因此BC。(2)同理,对于任意 a,cA C,其中 aA,cC,因为A B= A C,必有 a,cA B,其中 cB,因此CB。由( 1)、( 2)得:B = C4试证明:若R与S是集合A上的自反关系,则RS也是集合A上的自反关系证明:若 R与 S是集合 A上的自反关系,则任意xA,x,x R,x,x S, 从而 x,x RS, 注意 x 是 A的任意元素, 所以 RS也是集合 A上的自反关系。名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 4 页,共 4 页 - - - - - - - - -