高考理科数学导学导练:第3章-导数及其应用3-2-3导数与函数的综合问题.ppt

上传人:悠远 文档编号:3483363 上传时间:2020-09-08 格式:PPT 页数:38 大小:1.32MB
返回 下载 相关 举报
高考理科数学导学导练:第3章-导数及其应用3-2-3导数与函数的综合问题.ppt_第1页
第1页 / 共38页
高考理科数学导学导练:第3章-导数及其应用3-2-3导数与函数的综合问题.ppt_第2页
第2页 / 共38页
点击查看更多>>
资源描述

《高考理科数学导学导练:第3章-导数及其应用3-2-3导数与函数的综合问题.ppt》由会员分享,可在线阅读,更多相关《高考理科数学导学导练:第3章-导数及其应用3-2-3导数与函数的综合问题.ppt(38页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、【答案】 D,命题点2证明不等式 【例2】 (2016课标全国)设函数f(x)cos 2x(1)(cos x1),其中0,记|f(x)|的最大值为A. (1)求f(x); (2)求A; (3)证明|f(x)|2A.,【解析】 (1)f(x)2sin 2x(1)sin x. (2)当1时, |f(x)|cos 2x(1)(cos x1)|2(1)32f(0) 因此A32. 当01时, 将f(x)变形为f(x)2cos2x(1)cos x1. 设tcos x,则t1,1,,命题点3不等式恒成立问题 【例3】 (2016湖南长沙长郡中学第六次月考)已知函数f(x)xln xax2a(aR),其导函数

2、为f(x) (1)求函数g(x)f(x)(2a1)x的极值; (2)当x1时,关于x的不等式f(x)0恒成立,求a的取值范围,【方法规律】 (1)利用导数解不等式,一般可构造函数,利用已知条件确定函数单调性解不等式; (2)证明不等式f(x)g(x),可构造函数F(x)f(x)g(x),利用导数求F(x)的值域,得到F(x)0即可; (3)利用导数研究不等式恒成立问题,首先要构造函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;也可分离变量,构造函数,直接把问题转化为函数的最值问题,【方法规律】 研究方程根的情况,可以通过导数研究函数的单调性、最大值、

3、最小值、变化趋势等,根据题目要求,画出函数图象的走势规律,标明函数极(最)值的位置,通过数形结合的思想去分析问题,可以使问题的求解有一个清晰、直观的整体展现,跟踪训练2 已知函数f(x)x2xsin xcos x的图象与直线yb有两个不同交点,求b的取值范围 【解析】 f(x)x(2cos x), 令f(x)0,得x0. 当x0时,f(x)0,f(x)在(0,)上递增 当x0时,f(x)0,f(x)在(,0)上递减,f(x)的最小值为f(0)1. 函数f(x)在区间(,0)和(0,)上均单调, 当b1时,曲线yf(x)与直线yb有且仅有两个不同交点 综上可知,b的取值范围是(1,),于是,当x

4、变化时,f(x),f(x)的变化情况如下表:,由上表可得,x4时,函数f(x)取得极大值,也是最大值 所以,当x4时,函数f(x)取得最大值,且最大值等于42. 答:当销售价格为4元/千克时,商场每日销售该商品所获得的利润最大,【方法规律】 在求实际问题中的最大值或最小值时,一般先设自变量、因变量、建立函数关系式,并确定其定义域,利用求函数最值的方法求解,注意结果应与实际情况相符合用导数求实际问题中的最大(小)值,如果函数在区间内只有一个极值点,那么根据实际意义可知该极值点就是最值点,【解析】 由yx239x400, 得x1或x40, 由于0 x40时,y0; x40时,y0. 所以当x40时

5、,y有最小值 【答案】 40,即f(x)g(x)恒成立(11分) 因此,当a1时,在区间1,)上,函数f(x)的图象在函数g(x)图象的下方(12分) 【温馨提醒】 (1)导数法是求解函数单调性、极值、最值、参数等问题的有效方法,应用导数求单调区间关键是求解不等式的解集;最值问题关键在于比较极值与端点函数值的大小;参数问题涉及的有最值恒成立的问题、单调性的逆向应用等,求解时注意分类讨论思想的应用 (2)对于一些复杂问题,要善于将问题转化,转化成能用熟知的导数研究问题.,方法与技巧 1用导数方法证明不等式f(x)g(x)时,找到函数h(x)f(x)g(x)的零点是解题的突破口 2在讨论方程的根的个数、研究函数图象与x轴(或某直线)的交点个数、不等式恒成立等问题时,常常需要求出其中参数的取值范围,这类问题的实质就是函数的单调性与函数的极(最)值的应用,3在实际问题中,如果函数在区间内只有一个极值点,那么只要根据实际意义判定是最大值还是最小值即可,不必再与端点的函数值比较 失误与防范 1利用导数解决恒成立问题时,若分离参数后得到“af(x)恒成立”,要根据f(x)的值确定a的范围中端点能否取到 2利用导数解决实际生活中的优化问题,要注意问题的实际意义.,

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 高中数学

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁