《最新IGBT升压斩波电路设计.docx》由会员分享,可在线阅读,更多相关《最新IGBT升压斩波电路设计.docx(36页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、Four short words sum up what has lifted most successful individuals above the crowd: a little bit more.-author-dateIGBT升压斩波电路设计IGBT升压斩波电路设计 目录1 引言.42 方案设计.5 2.1 升压斩波电路原理.5 2.2 工作原理.62.3 参数计算73 分单元电路设计9 3.1 控制电路设计.9 3.1.1 控制电路方案的选择.9 3.1.2 SG3525的工作原理.10 3.2 驱动电路设计.10 3.3 保护电路设计.114 总电路图.135 课程设计总结.1
2、46 参考文献.15 1 引言电力电子技术(Power Electronics)也称为电力电子学。利用电力电子开关器件组成电力开关电路,利用晶体管集成电路和微处理器构成信号处理和控制系统,对电力开关电路进行实时、适式的控制,可以经济有效地实现开关模式的电力变换和电力控制,包括电压(电流)的大小、频率、相位和波形的变换和控制。是综合了电子技术、控制技术和电力技术的新兴交叉学科。现已成为现代电气工程与自动化专业不可缺少的一门专业基础课,在培养该专业人才中占有重要地位。直流变直流是电力电子技术中变流技术的重要部分,广泛应用于电子领域。直流-直流变流电路的功能是将直流电变为另一固定电压或可调电压的直流
3、电,包括直接直流变流电路和间接直流变流电路。直接直流变流电路也称斩波电路,它的功能就是将直流电变为另一固定电压或可调电压的直流电。本课程设计就是其中的一种斩波电路,即升压斩波电路。本课程设计采用IGBT全控型器件,采用专用PWM控制集成电路SG3525进行驱动,并利用MATLAB的Power System工具箱进行主电路的仿真实验,满足了设计要求,是一次比较成功的设计。控制与驱动电路2 方案设计 保护电路 主电路 直流电源 图1 系统总体框图斩波电路一般主要可分为主电路模块,控制电路模块和驱动电路模块三部分组成。其中,主电路模块主要由电源变压器、整流电路、滤波电路和直流斩波电路组成,其中主要由
4、全控器件IGBT的开通与关断的时间占空比来决定输出电压Uo的大小。控制与驱动电路模块:用直接产生PWM的专用芯片SG3525产生PWM信号送给驱动电路,经驱动电路来控制IGBT的开通与关断。电路模块:驱动电路把控制信号转换为加在IGBT控制端和公共端之间,用来驱动IGBT的开通与关断。驱动电路模块:控制电路中的保护电路是用来保护电路的,防止电路产生过电流现象损害电路设备。2.1 升压斩波电路原理图2斩波电路2.2 工作原理在电路中V导通时,电流由E经升压电感L和V形成回路,电感L储能;当V关断时,电感产生的反电动势和直流电源电压方向相同互相叠加,从而在负载侧得到高于电源的电压,二极管的作用是阻
5、断V导通时电容的放电回路。调节开关器件V的通断周期,可以调整负载侧输出电流和电压的大小。分析升压斩波电路的工作原理时,首先假设电路中电感L值很大,电容C值也很大。当可控开关V处于通态时,电源E向电感L充电,充电电流基本恒定为I1,同时电容C上的电压向负载R供电。因C值很大,基本保持输出电压uo为恒值,记为Uo。设V处于通态的时间为ton,此阶段电感L上积蓄的能量为EIlton。当V处于断态时E和L共同向电容C充电,并向负载R提供能量。设V处于断态的时间为toff,则在此期间电感L释放的能量为(Uo-E) Iltoff。当电路工作于稳态时,一个周期T中电感L积蓄的能量与释放的能量相等,即EIlt
6、on=(Uo-E) Iltoff (1)化简得 Uo=ton+tofftoffE=TtoffE(2)式中,T/toff1,输出电压高于电源电压,故称该电路为升压斩波电路。又称boost变换器(Boost Converter)。式(2)中T/toff表示升压比,调节其大小,即可改变输出电压U0的大小。将升压比的倒数记作,即= toffT。则和占空比有如下关系+=1(3)因此,式(2)可表示为:Uo=1E=11-E (4)升压斩波电路之所以能使输出电压高于电源电压,关键有两个原因:一是电感L储能之后具有使电压泵升的作用,二是电容C可将输出电压保持住。在以上分析中,认为V处于通态期间因电容C的作用使
7、得输出电压Uo不变,但实际上C值不可能为无穷大,在此阶段其向负载放电,Uo必然会有所下降,故实际输出电压会略低于式(4)所得结果。不过,在电容C值足够大时,误差很小,基本可以忽略。如果忽略电路中的损耗,则由电源提供的能量仅由负载R消耗,即EIl=UoIo(5)该式表明,升压斩波电路可看成是直流变压器。根据电路结构并结合式(4)得出输出电流的平均值Io为Io=UoR=1 ER (6)由式(5)即可得出电源电流Il为Il=UoEIo=12 ER(7)下面确定电流连续的临界条件:如果在T时刻电感电流iL刚好降到0,则为电流连续与断续的临界工作状态。此时电感电流平均值为Il=12il,max=12 E
8、Lton=TUo2L(1-) (8)又由式(4)和式(5)可得IoIl=1-(9)联立式(8)、(9)可得,在临界状态下的电感值为L=TUo2Io1-2(10)当时LL时,升压斩波电路工作在连续状态下。电感越大时,电感电流越平直。电容在关断期间释放的能量与开通期间吸收的电荷相等,即Q=IoT(11)则电压变化量Uo=QC=IoTC(12)所以电容值为C=IoTUo(13)滤波电容越大,输出电压越平直。2.3 参数计算(1)输出电压Uo、负载电阻R、输出电流Io根据设计要求,可取输入直流电压E=50V,输出功率Po=1kW,占空比=0.375。因此,由式(4)得输出电压Uo=11-E=11-0.
9、37550V=80V(14)负载电阻为R=(Uo2)/Po =802/1000=6.4,取标称值R=6.4由(6)式可得输出电流为 Io=Uo/R=80/6.4 A=12.5A由(7)式可得电源电流为 Il=Uo/E Io=80/5012.5=20A(2)电感L、电容C要求开关频率 fs=5KHz,所以开关周期T=1fs=210-4s。由式(10)可得在临界状态下的电感值为 L=TUo2Io1-2 =210-4100230.3751-0.3752=9.37510-5H为使升压斩波电路工作在连续状态下,取L=110-4H。确定电容的计算要求输出电压脉率小于10%,取5%,则Uo=Uo5%=4V。
10、代入式(13)可得C=IoTUo=30.375210-44=5.610-5F为使输出电压较平直,取电容值C=5.62510-5F。(3)IGBT 当IGBT截止时,回路通过二极管续流,此时IGBT两端承受最大正压为50V;而当=1时,IGBT有最大电流,其值为3A。故需选择集电极最大连续电流Ic=6A,反向击穿电压Bvceo=100V的IGBT,而一般的IGBT都满足要求。(4) 续流二极管 其承受最大反压50V,其承受最大电流趋近于10A,考虑2倍裕量,故需选择UN200V,IN10A的二极管。3 分单元电路设计3.1控制电路设计3.1.1 控制电路方案的选择控制电路主要实现的功能是产生控制
11、信号,用于控制斩波电路中主功率器件的通断,同时能够通过对占空比的调节达到控制输出电压大小的目的。根据对输出电压平均值进行调制的方式不同,斩波电路可有三种控制方式:1)保持开关周期T不变,调节开关导通时间ton,称为脉冲宽度调制(PWM)或脉冲调宽型;2)保持开关导通时间ton不变,改变开关周期T,称为频率调制或调频型;3)ton和T都可调,使占空比改变,称为混合型。其中,又以第1种应用最多,故本设计中也采用PWM控制。PWM控制就是对脉冲宽度进行调制的技术,即通过对一系列脉冲的宽度进行调制,来等效地获得所需要的波形(含形状和幅值)。这种电路把直流电压“斩”成一系列脉冲,改变脉冲的占空比来获得所
12、需的输出电压。改变脉冲的占空比就是对脉冲宽度进行调制,只是因为输入电压和所需要的输出电压都是直流电压,因此脉冲既是等幅的,也是等宽的,仅仅是对脉冲的占空比进行控制。升压电路所用全控型晶闸管IGBT是电压型驱动器件,其栅射极之间有数千皮法左右的极间电容,为快速建立驱动电压,要求驱动电路具有较小的输出电阻。使IGBT开通的栅射极间的驱动电压一般取1520V。同样,关断时施加一定幅值的负驱动电压(-5-15V)有利于减小关断时间和关断损耗。在栅极串入一只低值电阻可以减小寄生振荡,改电阻阻值应随被驱动器件电流额定值的增大而减小。本设计中,控制电路以SG3525为核心构成。SG3525为美国Silico
13、n General公司生产的专用PWM控制集成电路,它采用衡频脉宽调制控制方案,适合于各种开关电源、斩波器的控制。SG3525其内部包含精密基准源、锯齿波振荡器、误差放大器、比较器、分频器等,实现PWM控制所需的基本电路,并含有保护电路。其电路图如图3所示图3 SG3525电路图3.1.2 SG3525的工作原理SG3525的脚16 为5.1V基准电压源输出,精度可以达到(5.11)V,采用了温度补偿,而且设有过流保护电路。脚6、脚7 内有一个双门限比较器,内设电容充放电电路,加上外接的电阻电容电路共同构成SG3525 的振荡器,同时振荡器还设有外同步输入端(脚3)。脚1 及脚2 分别为芯片内
14、部误差放大器的反相输入端、同相输入端,该放大器是一个两级差分放大器。通过R2、R3、C3结合SG3525产生锯齿波输入到SG3525的振荡器。通过调节R6,可在OUTA、OUTB两端输出两个幅度相等,频率相等,相位相差180,占空比可调的矩形波(即PWM信号)。3.2 驱动电路设计IGBT是电力电子器件,控制电路产生的控制信号一般难以直接驱动IGBT,因此需要外加驱动电路。驱动电路是连接控制部分和主电路的桥梁,驱动电路的稳定与可靠性直接影响着整个系统变流的成败,具体来讲IGBT的驱动要求动态驱动能力强,能为IGBT栅极提供具有陡峭前后沿的驱动脉冲。否则IGBT会在开通及关延时,同时要保证当IG
15、BT损坏时驱动电路中的其他元件不会被损坏。其次能向 IGBT提供适当的正向和反向栅压,一般取+15 V左右的正向栅压比较恰当,取-5V反向栅压能让IGBT可靠截止。而且要具有栅压限幅电路,保护栅极不被击穿。IGBT栅极极限电压一般为土20 V,驱动信号超出此范围可能破坏栅极。最后当 IGBT处于负载短路或过流状态时,能在IGBT允许时间内通过逐渐降低栅压自动抑制故障电流,实现IGBT的软关断。驱动电路的软关断过程不应随输入信号的消失而受到影响。在本设计中,直接采用光电耦合式驱动电路,该电路双侧都有电源。其提供的脉冲宽度不受限制,较易检测IGBT的电压和电流的状态,对外送出过流信号。另外它使用比
16、较方便,稳定性比较好。如图4所示,控制电路所输出的PWM信号通过TLP521-1光耦合器实现电气隔离,再经过推挽电路进行放大,从而把输出的控制信号放大以驱动IGBT。为得到最佳的波形,在调试的过程中对光耦两端的电阻要进行合理的搭配。 图4 驱动电路3.3 保护电路设计升压斩波电路需同时具有过压和过流保护功能,如图5所示,均采用反馈控制,将过流过压信号反馈到芯片SG3525的输入,从而起到调节保护作用。同时芯片SG3525也可完成一定的保护功能,例如,脚8软起动功能,避免了开关电源在开机瞬间的电流冲击,可能造成的末级功率开关管的损坏。 图5 电压和电流保护电路4 总电路图如图6所示。220V的交
17、流电经变压器变压后输入到由D9、D10、D11、D12四个整流二极管组成的整流电路输入端 。经整流后电压含有较大的纹波,故通过L3、C4组成的LC低通滤波器进行滤波。滤波后输出的电压就比较平滑了。接下来就是由电感L4、斩波器件IGBT、电力二极管D14、电容C6组成的升压斩波电路。通过调节滑动电阻器R6改变驱动信号PWM的占空比就可以调节输出到负载R5两端电压。 图6 总原理图5 课程设计总结回顾起此次的电力电子课程之IGBT升压斩波电路设计,感慨颇多,它使我有了很多的心得体会,可以说这次IGBT升压斩波电路设计是在自己用心努力和在老师的精心指导下共同完成的。在两个星期的日子里,可以说自己每天
18、都充满着压力与忙碌,自己也的确从此次安排的课程设计中学到了很多东西。设计过程中,因为是第一次做,难免会遇到各种各样的问题。在设计的过程中发现了自己的不足之处,对以前所学过的知识理解得不够深刻,掌握得不够牢固。通过查阅大量有关资料,并与同课题同学互相讨论,交流经验和自学,若遇到实在搞不明白的问题就会及时请教老师,使自己经历了不少艰辛,但收获同样巨大,学到了不少知识。通过本次课程设计让我更加的深刻的理解了斩波器的原理,从而由斩波器这个小小的器件体会到了电力电子这门学科的重要性。通过这次设计,我还发现课本上的理论知识和实践还是有一定的差别,理论知识要应用到实践中要经过仔细地思考和多次尝试,只有这要才能达到理论联系实践的效果。如果不是通过课程设计,我们的知识面可能一直停留在理论的层面。最后我要感谢那些给予我帮助的老师和同学们,没有他们的耐心帮助,本次课程设计将很难完成。6 参考文献1王兆安,刘进军.电力电子技术.第5版.北京:机械工业出版社,2009.123126 2曲水印.电力电子变流技术.北京:冶金工业出版社,2002.1952053王云亮.电力电子技术.北京:电子工业出版社,2004.1441494洪乃刚.电力电子、电机控制系统的建模与仿真.北京:机械工业出版社,2010.120124-