《椭圆中焦点三角形的性质及应用--高二理科.doc》由会员分享,可在线阅读,更多相关《椭圆中焦点三角形的性质及应用--高二理科.doc(4页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、如有侵权,请联系网站删除,仅供学习与交流椭圆中焦点三角形的性质及应用-高二理科【精品文档】第 4 页椭圆中焦点三角形的性质及应用教学目标:理解并掌握焦点三角形在椭圆中的作用,并能利用数形结合 的思想解决解析问题教学重点:焦点三角形的结论与推广新课教学:1.焦点三角形定义:椭圆上任意一点与两焦点所构成的三角形称为焦点三角形。性质一:已知椭圆方程为两焦点分别为设焦点三角形中则。性质二:已知椭圆方程为左右两焦点分别为设焦点三角形,若最大,则点P为椭圆短轴的端点。证明:设,由焦半径公式可知:,在中,性质三:已知椭圆方程为两焦点分别为设焦点三角形中则证明:设则在中,由余弦定理得: 命题得证。高考题型:已
2、知椭圆的两焦点分别为若椭圆上存在一点使得求椭圆的离心率的取值范围。简解:由椭圆焦点三角形性质可知即 ,于是得到的取值范围是性质四:已知椭圆方程为两焦点分别为设焦点三角形,则椭圆的离心率。由正弦定理得:由等比定理得:而, 。应用举例:已知椭圆的焦点是F1(1,0)、F2(1,0),P为椭圆上一点,且F1F2是PF1和PF2的等差中项(1)求椭圆的方程;(2)若点P在第三象限,且PF1F2120,求tanF1PF2解:(1)由题设2F1F2PF1PF22a,又2c2,b 椭圆的方程为1(2)设F1PF2,则PF2F160椭圆的离心率 则,整理得:5sin(1cos)故,tanF1PF2tan课后巩固练习:1、 设椭圆的两个焦点分别为F1、F2,过F2作椭圆长轴的垂线交椭圆于点P,若F1PF2为等腰直角三角形,则椭圆的离心率是 ( ) A . B. C. D. 2、已知点P在椭圆上, 是椭圆的两个焦点,是直角三角形,则这样的点P有 A 2个 B4个 C 6个 D8个3、 椭圆的焦点、,P为椭圆上的一点,已知,则的面积为_ . 答案提示:1. D 2、 A 3、9