考研线性代数公式.doc

上传人:豆**** 文档编号:34441562 上传时间:2022-08-16 格式:DOC 页数:10 大小:992KB
返回 下载 相关 举报
考研线性代数公式.doc_第1页
第1页 / 共10页
考研线性代数公式.doc_第2页
第2页 / 共10页
点击查看更多>>
资源描述

《考研线性代数公式.doc》由会员分享,可在线阅读,更多相关《考研线性代数公式.doc(10页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、如有侵权,请联系网站删除,仅供学习与交流考研线性代数公式【精品文档】第 10 页For personal use only in study and research; not for commercial use1、行列式1. 行列式共有个元素,展开后有项,可分解为行列式;2. 代数余子式的性质:、和的大小无关;、某行(列)的元素乘以其它行(列)元素的代数余子式为0;、某行(列)的元素乘以该行(列)元素的代数余子式为;3. 代数余子式和余子式的关系:4. 设行列式:将上、下翻转或左右翻转,所得行列式为,则;将顺时针或逆时针旋转,所得行列式为,则;将主对角线翻转后(转置),所得行列式为,则;将

2、主副角线翻转后,所得行列式为,则;5. 行列式的重要公式:、主对角行列式:主对角元素的乘积;、副对角行列式:副对角元素的乘积;、上、下三角行列式():主对角元素的乘积;、和:副对角元素的乘积;、拉普拉斯展开式:、范德蒙行列式:大指标减小指标的连乘积;、特征值;6. 对于阶行列式,恒有:,其中为阶主子式;7. 证明的方法:、反证法;、构造齐次方程组,证明其有非零解;、利用秩,证明;、证明0是其特征值;2、矩阵1. 是阶可逆矩阵:(是非奇异矩阵);(是满秩矩阵)的行(列)向量组线性无关;齐次方程组有非零解;,总有唯一解;与等价;可表示成若干个初等矩阵的乘积;的特征值全不为0;是正定矩阵;的行(列)

3、向量组是的一组基;是中某两组基的过渡矩阵;2. 对于阶矩阵: 无条件恒成立;3. 矩阵是表格,推导符号为波浪号或箭头;行列式是数值,可求代数和;4. 关于分块矩阵的重要结论,其中均、可逆:若,则:、;(主对角分块)、;(副对角分块)、;(拉普拉斯)、;(拉普拉斯)3、矩阵的初等变换与线性方程组1. 一个矩阵,总可经过初等变换化为标准形,其标准形是唯一确定的:;等价类:所有与等价的矩阵组成的一个集合,称为一个等价类;标准形为其形状最简单的矩阵;对于同型矩阵、,若;2. 行最简形矩阵:、只能通过初等行变换获得;、每行首个非0元素必须为1;、每行首个非0元素所在列的其他元素必须为0;3. 初等行变换

4、的应用:(初等列变换类似,或转置后采用初等行变换)、 若,则可逆,且;、对矩阵做初等行变化,当变为时,就变成,即:;、求解线形方程组:对于个未知数个方程,如果,则可逆,且;4. 初等矩阵和对角矩阵的概念:、初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵;、,左乘矩阵,乘的各行元素;右乘,乘的各列元素; 、对调两行或两列,符号,且,例如:;、倍乘某行或某列,符号,且,例如:;、倍加某行或某列,符号,且,如:;5. 矩阵秩的基本性质:、若,则;、若、可逆,则;(可逆矩阵不影响矩阵的秩)、如果是矩阵,是矩阵,且,则:()、的列向量全部是齐次方程组解(转置运算后的结论);

5、、若、均为阶方阵,则;6. 三种特殊矩阵的方幂:、秩为1的矩阵:一定可以分解为列矩阵(向量)行矩阵(向量)的形式,再采用结合律;、型如的矩阵:利用二项展开式;二项展开式:;注:、展开后有项;、组合的性质:;、利用特征值和相似对角化:7. 伴随矩阵:、伴随矩阵的秩:;、伴随矩阵的特征值:;8. 关于矩阵秩的描述:、,中有阶子式不为0,阶子式全部为0;(两句话)、,中有阶子式全部为0;、,中有阶子式不为0;9. 线性方程组:,其中为矩阵,则:、与方程的个数相同,即方程组有个方程;、与方程组得未知数个数相同,方程组为元方程;10. 线性方程组的求解:、对增广矩阵进行初等行变换(只能使用初等行变换);

6、、齐次解为对应齐次方程组的解;、特解:自由变量赋初值后求得;11. 由个未知数个方程的方程组构成元线性方程:、(向量方程,为矩阵,个方程,个未知数)、(全部按列分块,其中);、(线性表出)、有解的充要条件:(为未知数的个数或维数)4、向量组的线性相关性1. 个维列向量所组成的向量组:构成矩阵;个维行向量所组成的向量组:构成矩阵;含有有限个向量的有序向量组与矩阵一一对应;2. 、向量组的线性相关、无关有、无非零解;(齐次线性方程组)、向量的线性表出是否有解;(线性方程组)、向量组的相互线性表示是否有解;(矩阵方程)3. 矩阵与行向量组等价的充分必要条件是:齐次方程组和同解;(例14)4. ;(例

7、15)5. 维向量线性相关的几何意义:、线性相关;、线性相关坐标成比例或共线(平行);、线性相关共面;6. 线性相关与无关的两套定理:若线性相关,则必线性相关;若线性无关,则必线性无关;(向量的个数加加减减,二者为对偶)若维向量组的每个向量上添上个分量,构成维向量组:若线性无关,则也线性无关;反之若线性相关,则也线性相关;(向量组的维数加加减减)简言之:无关组延长后仍无关,反之,不确定;7. 向量组(个数为)能由向量组(个数为)线性表示,且线性无关,则(二版定理7);向量组能由向量组线性表示,则;(定理3)向量组能由向量组线性表示有解;(定理2)向量组能由向量组等价(定理2推论)8. 方阵可逆

8、存在有限个初等矩阵,使;、矩阵行等价:(左乘,可逆)与同解、矩阵列等价:(右乘,可逆);、矩阵等价:(、可逆);9. 对于矩阵与:、若与行等价,则与的行秩相等;、若与行等价,则与同解,且与的任何对应的列向量组具有相同的线性相关性;、矩阵的初等变换不改变矩阵的秩;、矩阵的行秩等于列秩;10. 若,则:、的列向量组能由的列向量组线性表示,为系数矩阵;、的行向量组能由的行向量组线性表示,为系数矩阵;(转置)11. 齐次方程组的解一定是的解,考试中可以直接作为定理使用,而无需证明;、只有零解只有零解;、有非零解一定存在非零解;12. 设向量组可由向量组线性表示为:(题19结论)其中为,且线性无关,则组

9、线性无关;(与的列向量组具有相同线性相关性)(必要性:;充分性:反证法)注:当时,为方阵,可当作定理使用;13. 、对矩阵,存在,、的列向量线性无关;()、对矩阵,存在,、的行向量线性无关;14. 线性相关存在一组不全为0的数,使得成立;(定义)有非零解,即有非零解;,系数矩阵的秩小于未知数的个数;15. 设的矩阵的秩为,则元齐次线性方程组的解集的秩为:;16. 若为的一个解,为的一个基础解系,则线性无关;(题33结论)5、相似矩阵和二次型1. 正交矩阵或(定义),性质:、的列向量都是单位向量,且两两正交,即;、若为正交矩阵,则也为正交阵,且;、若、正交阵,则也是正交阵;注意:求解正交阵,千万

10、不要忘记施密特正交化和单位化;2. 施密特正交化:3. 对于普通方阵,不同特征值对应的特征向量线性无关;对于实对称阵,不同特征值对应的特征向量正交;4. 、与等价经过初等变换得到;,、可逆;,、同型;、与合同,其中可逆;与有相同的正、负惯性指数;、与相似;5. 相似一定合同、合同未必相似;若为正交矩阵,则,(合同、相似的约束条件不同,相似的更严格);6. 为对称阵,则为二次型矩阵;7. 元二次型为正定:的正惯性指数为;与合同,即存在可逆矩阵,使;的所有特征值均为正数;的各阶顺序主子式均大于0;(必要条件)仅供个人用于学习、研究;不得用于商业用途。For personal use only in

11、 study and research; not for commercial use.Nur fr den persnlichen fr Studien, Forschung, zu kommerziellen Zwecken verwendet werden.Pour l tude et la recherche uniquement des fins personnelles; pas des fins commerciales. , , . 以下无正文 仅供个人用于学习、研究;不得用于商业用途。For personal use only in study and research; not for commercial use.Nur fr den persnlichen fr Studien, Forschung, zu kommerziellen Zwecken verwendet werden.Pour l tude et la recherche uniquement des fins personnelles; pas des fins commerciales. , , . 以下无正文 For personal use only in study and research; not for commercial use

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 高考资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁