《二元一次方程组练习题(含答案).doc》由会员分享,可在线阅读,更多相关《二元一次方程组练习题(含答案).doc(6页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、如有侵权,请联系网站删除,仅供学习与交流二元一次方程组练习题(含答案)【精品文档】第 6 页二元一次方程组练习题一、选择题:1下列方程中,是二元一次方程的是( ) A3x2y=4z B6xy+9=0 C+4y=6 D4x=2下列方程组中,是二元一次方程组的是( ) A3二元一次方程5a11b=21 ( ) A有且只有一解 B有无数解 C无解 D有且只有两解4方程y=1x与3x+2y=5的公共解是( ) A5若x2+(3y+2)2=0,则的值是( ) A1 B2 C3 D6方程组的解与x与y的值相等,则k等于( )7下列各式,属于二元一次方程的个数有( ) xy+2xy=7; 4x+1=xy;
2、+y=5; x=y; x2y2=2 6x2y x+y+z=1 y(y1)=2y2y2+x A1 B2 C3 D48某年级学生共有246人,其中男生人数y比女生人数x的2倍少2人,则下面所列的方程组中符合题意的有( ) A二、填空题9已知方程2x+3y4=0,用含x的代数式表示y为:y=_;用含y的代数式表示x为:x=_10在二元一次方程x+3y=2中,当x=4时,y=_;当y=1时,x=_11若x3m32yn1=5是二元一次方程,则m=_,n=_12已知是方程xky=1的解,那么k=_13已知x1+(2y+1)2=0,且2xky=4,则k=_14二元一次方程x+y=5的正整数解有_15以为解的
3、一个二元一次方程是_16已知的解,则m=_,n=_三、解答题17当y=3时,二元一次方程3x+5y=3和3y2ax=a+2(关于x,y的方程)有相同的解,求a的值18如果(a2)x+(b+1)y=13是关于x,y的二元一次方程,则a,b满足什么条件?19二元一次方程组的解x,y的值相等,求k20已知x,y是有理数,且(x1)2+(2y+1)2=0,则xy的值是多少?21已知方程x+3y=5,请你写出一个二元一次方程,使它与已知方程所组成的方程组的解为22根据题意列出方程组:(1)明明到邮局买0.8元与2元的邮票共13枚,共花去20元钱,问明明两种邮票各买了多少枚?(2)将若干只鸡放入若干笼中,
4、若每个笼中放4只,则有一鸡无笼可放;若每个笼里放5只,则有一笼无鸡可放,问有多少只鸡,多少个笼?23方程组的解是否满足2xy=8?满足2xy=8的一对x,y的值是否是方程组的解?24(开放题)是否存在整数m,使关于x的方程2x+9=2(m2)x在整数范围内有解,你能找到几个m的值?你能求出相应的x的解吗?一、选择题1D 解析:掌握判断二元一次方程的三个必需条件:含有两个未知数;含有未知数的项的次数是1;等式两边都是整式2A 解析:二元一次方程组的三个必需条件:含有两个未知数,每个含未知数的项次数为1;每个方程都是整式方程3B 解析:不加限制条件时,一个二元一次方程有无数个解4C 解析:用排除法
5、,逐个代入验证5C 解析:利用非负数的性质 6B7C 解析:根据二元一次方程的定义来判定,含有两个未知数且未知数的次数不超过1次的整式方程叫二元一次方程,注意整理后是二元一次方程 8B二、填空题9 10 1011,2 解析:令3m3=1,n1=1,m=,n=2121 解析:把代入方程xky=1中,得23k=1,k=1134 解析:由已知得x1=0,2y+1=0,x=1,y=,把代入方程2xky=4中,2+k=4,k=114解:解析:x+y=5,y=5x,又x,y均为正整数,x为小于5的正整数当x=1时,y=4;当x=2时,y=3;当x=3,y=2;当x=4时,y=1x+y=5的正整数解为15x
6、+y=12 解析:以x与y的数量关系组建方程,如2x+y=17,2xy=3等,此题答案不唯一161 4 解析:将中进行求解三、解答题17解:y=3时,3x+5y=3,3x+5(3)=3,x=4,方程3x+5y=3和3x2ax=a+2有相同的解,3(3)2a4=a+2,a=18解:(a2)x+(b+1)y=13是关于x,y的二元一次方程,a20,b+10,a2,b1 解析:此题中,若要满足含有两个未知数,需使未知数的系数不为0(若系数为0,则该项就是0)19解:由题意可知x=y,4x+3y=7可化为4x+3x=7,x=1,y=1将x=1,y=1代入kx+(k1)y=3中得k+k1=3,k=2 解
7、析:由两个未知数的特殊关系,可将一个未知数用含另一个未知数的代数式代替,化“二元”为“一元”,从而求得两未知数的值20解:由(x1)2+(2y+1)2=0,可得x1=0且2y+1=0,x=1,y=当x=1,y=时,xy=1+=;当x=1,y=时,xy=1+=解析:任何有理数的平方都是非负数,且题中两非负数之和为0,则这两非负数(x1)2与(2y+1)2都等于0,从而得到x1=0,2y+1=021解:经验算是方程x+3y=5的解,再写一个方程,如xy=322(1)解:设08元的邮票买了x枚,2元的邮票买了y枚,根据题意得 (2)解:设有x只鸡,y个笼,根据题意得23解:满足,不一定解析:的解既是方程x+y=25的解,也满足2xy=8,方程组的解一定满足其中的任一个方程,但方程2xy=8的解有无数组,如x=10,y=12,不满足方程组24解:存在,四组原方程可变形为mx=7,当m=1时,x=7;m=1时,x=7;m=7时,x=1;m=7时x=1