《数学(心得)之浅析数学教师的教学思维.pdf》由会员分享,可在线阅读,更多相关《数学(心得)之浅析数学教师的教学思维.pdf(5页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、数学论文之浅析数学教师的教学思维数学论文之浅析数学教师的教学思维各级各类学校的教师学历达标以后怎么办?现代教育心理学研究表明:当教师的知识水平达到某一关键值,教学水平的提高将取决于教师对教学的理性认识教学思维能力。本文拟就对数学教师的教学思维谈些看法,以引起同行们的共同关注。1.数学教师的教学思维及其组成部分数学教师的教学思维是数学教师对数学教学活动(过程)的理性认识,是数学教师和数学教学对象(学生) 、数学教学内容(教材) 、数学教学环境(课堂)等交互作用的内在理性活动,是数学教师把数学知识的学术形态转换为教育形态的意识与能力。数学教师的教学思维更“着重于满足学生需求的教学的思维,而不是只针
2、对于教师本身或者学科内容的思维。 ”国外研究者把数学教师的教学思维分成六个部分,即理解、变换、讲授、评估、反思和新的理解。理解是指对要讲授的一系列数学概念进行批判性理解的过程;变换是指教师从个人对要讲授的数学概念的理解转变为如何促进学生理解这些概念的认识过程;讲授是促进学生理解的过程,它包含了各种教学行为,如组织和控制课堂教学,进行清晰的解释,以及为学生提供实践操作机会;评估或检查学生的理解情况,包括对学生的理解情况进行实时操作式的评估和更为正规的测试和评估程序;反思意味着需要评估教师自己的教学工作;如此下来,教师就发展了对数学教学内容的新的理解。2.数学教师的教学思维的特性数学教师的教学思维
3、具有以下一些特性:1、教学思维的发展性 数学教学的对象是发展中的人。学生在获取知识、技能与能力,并在生理、心理的其他侧面得到迅速成长,但彼此间的成长速率并不相同,我们不能停留于对共性的普遍认识,而应更深入了解各个学生的特殊性,在充分肯定教学活动规范性质的同时应区分在各种思想方法或认知策略之间是“因人而异”的,认识发展的过程也是“因时而异”的。2、教学思维的深刻性 数学教师教学水平的提高不能完全依赖于经验,因为经验具有局限性与偶然性,属于认识的低水平。凭借外显的过于划一的教学目标会低估教学过程的复杂性、掩盖数学教学活动的深刻性。只有建立在教育科学理论基础上,深入了解学生的真实情况及教学内容、教学
4、环境的具体情况,才能提高教学水平和教学质量。3、教学思维的社会性 现代教育与古代教育的一个重要区别,即现代教育是一种有着明确目的和高度组织化了的社会行为。每个数学教师都是作为“教育共同体”的一员从事自己的教学活动,而数学教师的教学活动又必定是在一定的社会教育体制(教学大纲、教材和一定的考核方法等)约束下进行的。同时,数学教师的教学(育)也肩负着使学生成为能适应社会发展需要的有效的社会成员。4、教学思维的教育性 数学教师良好的教学思维能力,不仅是进行数学知识、思想、方法教育(学)的保证,更是培养学生鲜明的个性、独立的人格和创造的活力的重要方面。3.提高数学教师教学思维能力的途径数学教师教学思维能
5、力的形成和提高是一个终身的过程,贯穿于整个教师生涯之中。其中应注意以下两点:1、加强理论学习,提高理性认识 众所周知,在数学教育领域中存在有众多不同的口号,如60 年代的“新数运动” 、70 年代的“回到基础” 、80 年代的“问题解决” ,以及现今人们经常提到的“大众数学”和“数学教育的现代化”等。对于每一个数学教师而言,面对如此多的口号,应当作出自己的理性的判断,才能不成为这些时髦口号的不自觉的俘虏。数学教育的基本矛盾是“数学方面”和“教育方面”之间的矛盾。前者是指数学教育应当正确地体现数学的本质,后者则是指数学教育应当充分体现教育的社会目标并符合教育的规律。这实质上反映了数学教育哲学的问
6、题。通过学习,数学教师应对以下问题发展和提高理性认识。(1)数学哲学:数学是什么?如何解释其本质?提出过哪些数学哲学?(2)学习的本质:数学学习理论的基础由哪些哲学假说或可能隐含的假说所构成?应采纳哪些认识论和学习论?(3)教育目的:数学教育的目的是什么?为谁而提的目的?建立在什么价值标准上的目的?这个目的使谁受益,谁受损?(4)教学的本质:数学教学依据什么哲学假说或可能隐含的假说?这些假说可靠吗?为达到数学教育目的应采用何种方法?这些方法和目的一致吗?2 、勇于探索实践,不断总结经验 数学教师的教学思维能力与教学研究能力之间是互为提高、 密不可分的。 作为数学教师个体而言,不仅要关注数学教育
7、的宏观研究,如数学教育的一般理论、课程整体设计等,更要重视数学教学的微观研究,这也不仅仅是一堂课的设计、一类题的求解等,而是指理论指导下的微型调查、微型实验,进行个案研究。如弗赖登塔尔的许多实验就是通过个案调查,用儿童的草稿纸作证据来阐述数学教育的某些原理。再如范希尔关于几何学习的“五个水平”理论对中国是否适用?教师提问后应给学生多少思考的时间,才会真正引起学生的思考?男女生在数学学习中究竟存在多大的差异?什么原因?何时产生明显差异?等等。这些调查或实验都要精心设计,才会有科学根据,具有说服力。通过这样的调查或实验,也能使数学教师的教学思维能力不断提高。进行数学教育的微观研究,可以从数学教育的功能、数学教学中的德育与美育、数学教育(学)基本原则、数学心理学与教材教法、数学哲学、数学史与数学方法论等方面加以考虑,对此天津师大张国杰教授等曾提出过 90 个数学教育微型调查与微型实验的课题或问题(详见数学教育学报 1996 年第 3 期) 。数学教师可根据自己的具体情况,恰当选题,勇于探索实践,不断总结经验,定能对提高自己的数学教学思维能力产生积极作用。