《2022年初中数学《几何最值问题》典型例题 2.pdf》由会员分享,可在线阅读,更多相关《2022年初中数学《几何最值问题》典型例题 2.pdf(7页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、1初中数学最值问题典型例题一、解决几何最值问题的通常思路两点之间线段最短;直线外一点与直线上所有点的连线段中,垂线段最短;三角形两边之和大于第三边或三角形两边之差小于第三边(重合时取到最值)是解决几何最值问题的理论依据,根据不同特征转化是解决最值问题的关键通过转化减少变量,向三个定理靠拢进而解决问题;直接调用基本模型也是解决几何最值问题的高效手段几何最值问题中的基本模型举例轴对称最值图形lPBANMlBAAPBl原理两点之间线段最短两点之间线段最短三角形三边关系特征A,B 为定点, l 为定直线, P 为直线 l 上的一个动点,求AP+BP 的最小值A,B 为定点, l 为定直线,MN 为直线
2、 l上的一条动线段,求 AM+BN 的最小值A, B 为定点,l 为定直线,P 为直线 l 上的一个动点,求 |AP-BP|的最大值转化作其中一个定点关于定直线 l 的对称点先平移 AM 或 BN 使 M, N重合,然后作其中一个定点关于定直线l 的对称点作其中一个定点关于定直线 l 的对称点折叠最值图形BNMCAB原理两点之间线段最短特征在 ABC 中,M,N 两点分别是边AB,BC 上的动点,将BMN 沿 MN 翻折,B 点的对应点为B,连接 AB,求 AB的最小值转化转化成求 AB+BN+NC 的最小值二、典型题型1如图:点 P 是AOB 内一定点, 点 M、N 分别在边 OA、OB 上
3、运动,若AOB=45 ,OP=3 2,则PMN的周长的最小值为【分析】 作 P 关于 OA,OB 的对称点 C,D 连接 OC,OD则当 M,N 是 CD 与 OA,OB 的交点时, PMN的周长最短, 最短的值是CD 的长根据对称的性质可以证得:COD 是等腰直角三角形,据此即可求解【解答】 解:作 P 关于 OA,OB 的对称点 C,D连接 OC,OD则当 M,N 是 CD 与 OA,OB 的交点时,PMN 的周长最短,最短的值是CD 的长PC 关于 OA 对称,COP=2AOP,OC=OP同理, DOP =2BOP,OP=OD名师资料总结 - - -精品资料欢迎下载 - - - - -
4、- - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 1 页,共 7 页 - - - - - - - - - 2COD=COP+DOP=2(AOP+BOP)=2AOB=90 ,OC=ODCOD 是等腰直角三角形则 CD=2OC=2 32=6【题后思考】 本题考查了对称的性质,正确作出图形,理解PMN 周长最小的条件是解题的关键2如图,当四边形PABN 的周长最小时,a=【分析】 因为 AB,PN 的长度都是固定的,所以求出PA+NB 的长度就行了问题就是PA+NB 什么时候最短把 B 点向左平移2 个单位到 B点;作 B 关于 x 轴的对称点B ,连
5、接 AB ,交 x 轴于 P,从而确定 N 点位置,此时 PA+NB 最短设直线 AB 的解析式为y=kx+b,待定系数法求直线解析式即可求得a 的值【解答】 解:将 N 点向左平移2 单位与 P 重合,点 B 向左平移2 单位到 B (2, 1) ,作 B关于 x 轴的对称点B ,根据作法知点B (2,1) ,设直线 AB 的解析式为y=kx+b,则123kbkb,解得 k=4,b=7y=4x7当 y=0 时, x=74,即 P(74,0) ,a=74故答案填:74【题后思考】 考查关于 X 轴的对称点,两点之间线段最短等知识名师资料总结 - - -精品资料欢迎下载 - - - - - -
6、- - - - - - - - - - - - 名师精心整理 - - - - - - - 第 2 页,共 7 页 - - - - - - - - - 33如图, A、B两点在直线的两侧,点A 到直线的距离AM=4,点 B 到直线的距离BN=1,且 MN=4,P 为直线上的动点,|PAPB|的最大值为DPBNBMA【分析】 作点 B 于直线 l 的对称点 B,则 PB=PB因而 |PAPB|=|PAPB|,则当 A,B 、P 在一条直线上时,|PAPB|的值最大根据平行线分线段定理即可求得PN 和 PM 的值然后根据勾股定理求得PA、 PB 的值,进而求得 |PAPB|的最大值【解答】 解:作点
7、 B 于直线 l 的对称点 B,连 AB 并延长交直线l 于 PBN=BN=1,过 D 点作 BDAM,利用勾股定理求出AB=5|PAPB|的最大值 =5【题后思考】 本题考查了作图轴对称变换,勾股定理等,熟知“ 两点之间线段最短” 是解答此题的关键4动手操作:在矩形纸片ABCD 中, AB=3,AD=5如图所示,折叠纸片,使点A 落在 BC 边上的 A 处,折痕为 PQ,当点 A 在 BC 边上移动时,折痕的端点P、Q 也随之移动若限定点P、Q 分别在 AB、AD 边上移动,则点A在 BC 边上可移动的最大距离为【分析】 本题关键在于找到两个极端,即BA取最大或最小值时,点P 或 Q 的位置
8、经实验不难发现,分别求出点 P 与 B 重合时, BA取最大值3 和当点 Q 与 D 重合时, BA 的最小值1所以可求点A 在 BC 边上移动的最大距离为2【解答】 解:当点 P 与 B 重合时, BA取最大值是3,当点 Q 与 D 重合时(如图) ,由勾股定理得A C=4,此时 BA 取最小值为1则点 A在 BC 边上移动的最大距离为31=2故答案为: 2 【题后思考】 本题考查了学生的动手能力及图形的折叠、勾股定理的应用等知识,难度稍大,学生主要缺乏动手操作习惯,单凭想象造成错误5如图,直角梯形纸片ABCD,ADAB,AB=8,AD=CD=4,点 E、F 分别在线段AB、AD 上,将 A
9、EF沿 EF 翻折,点 A 的落点记为P当 P 落在直角梯形ABCD 内部时, PD 的最小值等于名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 3 页,共 7 页 - - - - - - - - - 4【分析】 如图,经分析、探究,只有当直径EF 最大,且点A 落在 BD 上时, PD 最小;根据勾股定理求出BD 的长度,问题即可解决【解答】 解:如图,当点 P 落在梯形的内部时,P=A=90 ,四边形 PFAE 是以 EF 为直径的圆内接四边形,只有当直径EF 最大,且点A 落在
10、 BD 上时, PD 最小,此时 E 与点 B 重合;由题意得: PE=AB=8,由勾股定理得:BD2=82+62=80,BD=4 5,PD=4 58【题后思考】 该命题以直角梯形为载体,以翻折变换为方法,以考查全等三角形的判定及其性质的应用为核心构造而成;解题的关键是抓住图形在运动过程中的某一瞬间,动中求静,以静制动6如图, MON=90 ,矩形 ABCD 的顶点 A、B 分别在边 OM,ON 上,当 B 在边 ON 上运动时, A 随之在 OM 上运动,矩形ABCD 的形状保持不变,其中AB=2,BC=1,运动过程中,点D 到点 O 的最大距离为【分析】取 AB 的中点 E,连接 OD、
11、OE、 DE,根据直角三角形斜边上的中线等于斜边的一半可得OE=AB,利用勾股定理列式求出DE,然后根据三角形任意两边之和大于第三边可得OD 过点 E 时最大【解答】 解:如图,取AB 的中点 E,连接 OD、OE、DE,MON=90 ,AB=2 OE=AE=12AB=1,BC=1,四边形ABCD 是矩形,AD=BC=1,DE=2,根据三角形的三边关系,ODOE+DE,名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 4 页,共 7 页 - - - - - - - - - 5当 OD
12、过点 E 是最大,最大值为2+1故答案为:2+1【题后思考】 本题考查了矩形的性质,直角三角形斜边上的中线等于斜边的一半的性质,三角形的三边关系,勾股定理,确定出OD 过 AB 的中点时值最大是解题的关键7如图,线段AB 的长为 4,C 为 AB 上一动点,分别以AC、BC 为斜边在 AB 的同侧作等腰直角ACD和等腰直角 BCE,那么 DE 长的最小值是【分析】 设 AC=x,BC=4x,根据等腰直角三角形性质,得出CD=22x,CD=22(4x) ,根据勾股定理然后用配方法即可求解【解答】 解:设 AC=x,BC=4x,ABC,BCD 均为等腰直角三角形,CD=22x,CD=22(4x)
13、,ACD=45 ,BCD =45 ,DCE=90 ,DE2=CD2+CE2=12x2+12(4x)2=x24x+8=(x2)2+4,根据二次函数的最值,当 x 取 2 时, DE 取最小值,最小值为:4故答案为: 2【题后思考】 本题考查了二次函数最值及等腰直角三角形,难度不大,关键是掌握用配方法求二次函数最值8如图,菱形 ABCD 中,AB=2,A=120 ,点 P,Q,K 分别为线段BC,CD,BD 上的任意一点, 则 PK+QK的最小值为【分析】 根据轴对称确定最短路线问题,作点P 关于 BD 的对称点P ,连接 P Q 与 BD 的交点即为所求的点 K,然后根据直线外一点到直线的所有连
14、线中垂直线段最短的性质可知PQCD 时 PK+QK 的最小值,然后求解即可【解答】 解:如图, AB=2,A=120 ,点 P到 CD 的距离为 232=3,PK+QK 的最小值为3名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 5 页,共 7 页 - - - - - - - - - 6故答案为:3【题后思考】 本题考查了菱形的性质,轴对称确定最短路线问题,熟记菱形的轴对称性和利用轴对称确定最短路线的方法是解题的关键9如图所示,正方形ABCD 的边长为 1,点 P 为边 BC 上的任
15、意一点(可与B、C 重合),分别过B、C、D 作射线 AP 的垂线,垂足分别为B、C 、D,则 BB+ CC +DD 的取值范围是【分析】 首先连接 AC,DP由正方形ABCD 的边长为 1,即可得: SADP=12S正方形ABCD=12,S ABP+SACP=SABC=12S正方形ABCD=12,继而可得12AP?(BB+ CC+ DD )=1,又由 1 AP2,即可求得答案【解答】 解:连接 AC,DP四边形 ABCD 是正方形,正方形ABCD 的边长为 1,AB=CD, S正方形ABCD=1,S ADP=12S正方形ABCD=12,SABP+SACP=S ABC=12S正方形ABCD=1
16、2,S ADP+SABP+S ACP=1,12AP? BB+12AP? CC+12AP?DD=12AP?(BB+ CC+ DD )=1,则 BB+ CC+ DD=2AP,1 AP2,当 P 与 B 重合时,有最大值2;当 P 与 C 重合时,有最小值22 BB+ CC+ DD 2故答案为:2 BB+ CC+ DD2【题后思考】 此题考查了正方形的性质、面积及等积变换问题此题难度较大,解题的关键是连接AC,DP,根据题意得到SADP+SABP+SACP=1,继而得到BB+ CC+ DD =2AP名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - -
17、- - - 名师精心整理 - - - - - - - 第 6 页,共 7 页 - - - - - - - - - 710如图,菱形ABCD 中,A=60 ,AB=3,A、B 的半径分别为2 和 1,P、E、F 分别是边CD、A和B 上的动点,则PE+PF 的最小值是【分析】 利用菱形的性质以及相切两圆的性质得出P 与 D 重合时 PE+PF 的最小值,进而求出即可【解答】 解:由题意可得出:当P 与 D 重合时, E 点在 AD 上, F 在 BD 上,此时PE+PF 最小,连接 BD,菱形 ABCD 中,A=60 ,AB=AD,则 ABD 是等边三角形,BD=AB=AD=3,A、B 的半径分别为2 和 1,PE=1, DF=2,PE+PF 的最小值是3故答案为: 3【题后思考】 此题主要考查了菱形的性质以及相切两圆的性质等知识,根据题意得出P 点位置是解题关键名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 7 页,共 7 页 - - - - - - - - -