2022年多尺度耦合理论 .pdf

上传人:Che****ry 文档编号:34282976 上传时间:2022-08-15 格式:PDF 页数:3 大小:67.08KB
返回 下载 相关 举报
2022年多尺度耦合理论 .pdf_第1页
第1页 / 共3页
2022年多尺度耦合理论 .pdf_第2页
第2页 / 共3页
点击查看更多>>
资源描述

《2022年多尺度耦合理论 .pdf》由会员分享,可在线阅读,更多相关《2022年多尺度耦合理论 .pdf(3页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、何国威、白以龙中国科学院力学研究所,非线性力学国家重点实验室多尺度力学是当代科学技术发展的需求和前沿。在生物科学,材料科学,化学科学和流体力学中,许多重要问题的本质都表现为多尺度,它们涉及从分子尺度到连续介质尺度上不同物理机制的耦合和关联。例如,在生物和化学科学里,在分子尺度上的不同性态产生了生物体尺度上的复杂现象;在固体破坏中,不同尺度的微损伤相互作用产生更大尺度上的裂纹导致材料破坏;在流体力学中,不同时空尺度的涡相互作用构成复杂的流动图案。这些问题的共同特点是不同尺度上物理机制的耦合和关联。只考虑单个尺度上某个物理机制,不可能描述整个系统的复杂现象。因此,多尺度力学的核心问题是多过程耦合和

2、跨尺度关联。多尺度力学是传统的针对多尺度问题研究的发展,但有着本质的不同。它们都研究不能通过解耦进行求解的多尺度耦合问题。但是,传统的多尺度问题具有相似性或弱耦合,即:不同尺度上的物理过程具有相似性,因此我们可以求相似解;或者,不同尺度上的物理过程具有弱耦合,因此我们可以采用平均法求解。然而,多尺度力学的研究对象具有多样性和强耦合,即:不同尺度上的物理过程既不具有相似性,耦合也不再是弱的了。因此,传统的相似解和平均法对多尺度力学的问题都不适用。动力系统理论和统计力学为多尺度现象的研究提供了基本方法。在一个给定尺度上的物理过程可以用动力学方程描述,而动力学方程的建立主要依赖于经典力学和量子力学。

3、问题的关键在于不同尺度上物理过程的相互耦合。如果可以忽略耦合,单个尺度上的物理过程完全可以由经典力学或量子力学描述,剩下的就是类似于解方程那样的认识过程,原则上并不是什么困难的事情。在平衡态统计物理里,不同尺度之间物理过程耦合的基本假设是基于等概率原理的统计平均。但是,大多数多尺度问题涉及统计力学中非平衡态的非线性演化过程,不同的尺度之间存在强耦合或敏感耦合,不能简单地采用绝热近似、统计平均以及微扰等方法处理,而必须将不同尺度耦合求解。特别是存在敏感耦合的情形,小尺度上的某些无序性细节在非线性演化过程中可能被强烈地放大,变成大尺度上的显著效应。统计力学为处理这类问题提供了一个基本出发点。一个直

4、接的方法是从第一原理出发,利用分子动力学,计算分子尺度上的所有细节,然后求得连续介质尺度上的物理性质。但是,由于现有计算机的限制,从第一原理出发的直接法并不现实。一个比较现实的方法是寻找中间尺度进行过渡,它包括基于区域分解的准连续方法和基于粗粒化的粒子动力学法。这些构造模型的方法在不同的问题上都取得了一定程度的成功,但是,它们都不具有普适性。最新的发展是建立在齐次化方法上的非均匀齐次法,它试图给出解决跨尺度关联问题的一般框架。现代力学中两个典型的多尺度问题是流体湍流和固体破坏,它们既有共同点,但又有所区别:流体湍流表现为不同尺度上多个物理过程的耦合,它没有尺度分离;固体破坏表现为不同尺度上物理

5、机制的跨尺度关联,它具有尺度分离。现详细讨论如下:(1)流体湍流:在流体湍流里,不同尺度上的涡相互作用构成了复杂的流动图案,它们具有不同的物理机制而又相互耦合。在上个世纪,针对不同尺度上物理过程相似的问题,流体力学家发展了求相似解的方法;针对不同尺度上物理过程耦合较弱的问题,流体力学家发展了小参数摄动法。正是相似解和摄动法解决了航空航天中诸如湍流边界层这样的重大问题,形成了力学史上的一个黄金时代。但是,现在对湍流问题的研究与过去有了根本的不同,它表现为要认识不同尺度上不同的物理过程的强耦合。对于这类问题,经典的相似解和摄动法并不适用。因此,必须发展能解决多尺度现象里多样性和强耦合问题的理论和数

6、值方法。湍流具有从耗散尺度到积分尺度的连续谱,它没有尺度分离,因此平均法并不适用。统计物理为湍流的多尺度模型提供了工具。一般而言,湍流的统计特性可以用矩和概率密度函数描述。但是,矩方程含有非线性引起的高阶矩耦合,概率密度函数方程含有耗散引起的名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 1 页,共 3 页 - - - - - - - - - 空间耦合。在湍流的解析理论中,直接作用逼近(DIA )已成为矩方程耦合的经典方法;映射封闭逼近( MCA )正发展成为概率密度函数方程的封闭方

7、法。在湍流的唯象理论中,高斯封闭是耦合表象的基础,例如,EDQNM 方法和朗之万方程。大涡模拟是湍流数值模拟的重要方法。在大涡模拟中,直接计算大尺度,而小尺度对大尺度的影响用亚格子模型反映。现有的亚格子模型是根据能量平衡方程得到的。它能反映小尺度对大尺度能量的影响,不一定能反映小尺度对大尺度其它物理量的影响,特别是随时间演化的非定常特性。多尺度大涡模拟方法考虑了多个不同尺度上多个不同的物理过程的耦合,正成为该领域的重要研究方向。(2)固体破坏:人类社会生活在一个主要由固体介质支撑的环境中,固体介质的破坏、失效几乎涉及人类生活的一切方面、工程技术的各个领域、以及地震、滑坡、雪崩等多种严重自然灾害

8、之中。但是,由于固体破坏问题的复杂性,使之成为固体力学、材料科学、物理学以及诸多相关学科的跨世纪难题。对于多尺度问题,人们注意到,虽然平均化常常是一种有效的方法,但是它只适于预测诸如刚度和传导率这样的一类性质。而断裂或“ 崩溃 ” 一类现象会依赖于微结构的具体细节,通常,平均化的方法是不适用的。因此对于固体破坏的研究,例如对于地震预测性的争论,一直在持续着。Herrmann 和他的合作者的书从非均匀介质的角度出发汇集了上世纪后半期这方面的进展。2004 年在重庆召开的会议的详尽总结反映了近年来对此问题的各类看法和学说。固体破坏预测的困难,主要联系于它的两个特征:1. 一大类固体的破坏表现为突发

9、性灾变,灾变前很难捕捉到明显的前兆;2. 宏观上大体相同的系统其灾变行为可有显著差异,即灾变呈现不确定性,只用宏观平均量不足以表征灾变行为。这类复杂特征的根源在于多尺度耦合效应。固体破坏的演化过程涉及很宽的空间和时间的尺度范围。其破坏过程通常是一种跨尺度演化的过程,即由大量微损伤的累积并通过跨尺度的非线性串级发展而诱发宏观灾变。在整个过程中,微小尺度上的某些无序结构的效应可能被强烈放大,上升为显著的大尺度效应,对系统的灾变行为产生重要的影响。那么,该怎么处理多尺度耦合的问题呢?Barenblatt 建议,要确定材料微结构的变化对宏观行为的控制性影响,应该将宏观力学方程与微结构转变的动力学方程组

10、成统一的方程组,耦合求解。特别是,他还注意到了Deborah 数的重要性。但是另一方面,由于不可能对各个尺度上的无序结构及其敏感效应作详尽无遗的描述,灾变行为呈现不确定性,跨尺度敏感性就是一个典型的案例。实现灾变预测的另一种可能的策略是寻找灾变的共性。借用和发展逾渗模型,自组织临界性,临界点模型等等在许多文献中被探讨着。另一方面,这种共性可能表现为损伤局部化和临界敏感性,它们是典型的多尺度耦合现象,是需要在连接细观与宏观尺度的跨尺度耦合理论框架中阐明的。它们可能是具有普适性的并且可监测的灾变前兆,因而可为灾变预测提供线索。这表明进一步发展关于固体破坏的跨尺度耦合的理论应是当前最重要的研究方向之

11、一。正如 Kadanoff 指出的,为了考察材料的失效、地震或雪崩动力学等,人们开始在所谓的物理动力学领域开展了各种深入的研究。当科学转移到越来越复杂的系统时,可能统计方法是下一代科学问题的一个重要投入。流体湍流和固体破坏从具体物理机制来看,似乎毫不相干。但是从多尺度耦合的角度来看,无论是基本概念、研究方法还是理论框架,都有惊人的共同之处。例如:它们都涉及非平衡、非线性的演化,不同尺度之间存在强耦合,不能采用微扰或求相似解的方法,都存在跨尺度的敏感性,以致某些涨落会影响全局的突变等等。并且,二十一世纪纳米科学和生物技术的发展促进了多尺度力学的发展,一个更具挑战性的范例如下:(3)从分子动力学到

12、连续介质力学的跨尺度关联纳米科学和生物技术的发展促进了从分子动力学到连续介质力学的跨尺度关联的研名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 2 页,共 3 页 - - - - - - - - - 究。例如,在纳微流动中,分子动力学受现在计算机能力的限制,不能用于整个流动区域的模拟,而Navier-Stokes 方程不能描述纳微流动中连续介质假设不成立的区域。因此发展了把分子动力学和连续介质力学描述耦合起来的混合法。在混合法里,在连续介质假设成立的区域仍用Navier-Stokes

13、 方程,而在连续介质假设不成立的区域用分子动力学,然后通过重叠区的粒子动力学把它们耦合起来。这种混合法正得到越来越多的重视,广泛的应用于纳米器件和材料的研究之中。混合法的关键就是从分子动力学到连续介质力学的跨尺度关联。作为结束语,我们简述开展多尺度力学研究的意义:首先,多尺度力学促进了处理耦合问题的唯象方法到演绎方法的过渡。例如,在流体湍流里,大多数湍流模型是经验公式,不能直接从控制方程导出。然而,DIA 和 MCA 方法可用逐步逼近的方式推导出湍流模型;在固体破坏中,准连续理论和统计损伤力学试图用统计力学的方式从局部守恒方程出发演绎推导从分子尺度到连续介质的跨尺度关联。这是从经验公式到理性认

14、识的飞跃。其次,多尺度力学的研究有可能产生新的学科生长点。目前,对多尺度力学的个案处理已有了一定的进展。但是,似乎并不存在对一般多尺度力学问题的普适方法。然而,对于一类多尺度耦合问题个案的处理也许会启发出一定程度上的统一处理方法。这个统一的处理方法多半会来自于学科的交叉,也就是说,多尺度现象里看似毫不相关的物理现象的统一处理,会给多尺度耦合问题的研究带来新的发展机遇。就像十九世纪电学和磁学的统一于具体的麦克斯韦方程和二十世纪生物学与分子科学的结合导致分子生物学的蓬勃发展一样,多尺度力学研究中的新的概念和方法的引入和融合统一会创造出学科发展的新生长点。除了上述统计物理学与流体湍流和固体破坏的结合

15、之外,多尺度耦合的新生长点也许还存在于:软物质和连续介质力学、统计力学的结合;生命现象,如基因系列,蛋白质功能的研究诱发的新的统计力学方法;纳/微米尺度和原子分子间作用相结合的准连续力学理论。最后,多尺度力学的发展有可能推动力学走向自然科学和技术科学的新前沿。多尺度力学的研究对象涉及分子尺度到连续介质,因此,它不仅涉及经典力学还涉及量子力学;多尺度力学的研究方法是动力系统和统计力学的结合,它涉及到当代科学方法论上的突破;多尺度力学的研究成果不仅可以应用到经典的流体湍流和固体破坏,还可以广泛地应用到材料、生物和化学等的前沿领域。名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 3 页,共 3 页 - - - - - - - - -

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 高考资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁