2022年三角形知识总结与尺规作图知识点 .pdf

上传人:Che****ry 文档编号:34267818 上传时间:2022-08-15 格式:PDF 页数:13 大小:334.67KB
返回 下载 相关 举报
2022年三角形知识总结与尺规作图知识点 .pdf_第1页
第1页 / 共13页
2022年三角形知识总结与尺规作图知识点 .pdf_第2页
第2页 / 共13页
点击查看更多>>
资源描述

《2022年三角形知识总结与尺规作图知识点 .pdf》由会员分享,可在线阅读,更多相关《2022年三角形知识总结与尺规作图知识点 .pdf(13页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、学习资料收集于网络,仅供参考学习资料第一部分三角形考点一、三角形1、三角形的概念由不在同意直线上的三条线段首尾顺次相接所组成的图形叫做三角形。组成三角形的线段叫做三角形的边;相邻两边的公共端点叫做三角形的顶点;相邻两边所组成的角叫做三角形的内角,简称三角形的角。2、三角形中的主要线段(1)三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点间的线段叫做三角形的角平分线。(2)在三角形中,连接一个顶点和它对边的中点的线段叫做三角形的中线。(3)从三角形一个顶点向它的对边做垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高)。3、三角形的稳定性三角形的形状是固定的,三角形的这个性质

2、叫做三角形的稳定性。三角形的这个性质在生产生活中应用很广,需要稳定的东西一般都制成三角形的形状。4、三角形的特性与表示三角形有下面三个特性:(1)三角形有三条线段(2)三条线段不在同一直线上三角形是封闭图形(3)首尾顺次相接三角形用符号“”表示,顶点是A、B、C 的三角形记作“ABC ” ,读作“三角形ABC ” 。5、三角形的分类三角形按边的关系分类如下:不等边三角形三角形底和腰不相等的等腰三角形等腰三角形等边三角形三角形按角的关系分类如下:直角三角形(有一个角为直角的三角形)三角形锐角三角形(三个角都是锐角的三角形)斜三角形钝角三角形(有一个角为钝角的三角形)把边和角联系在一起,我们又有一

3、种特殊的三角形:等腰直角三角形。它是两条直角边相等的直角三角形。6、三角形的三边关系定理及推论(1)三角形三边关系定理:三角形的两边之和大于第三边。推论:三角形的两边之差小于第三边。(2)三角形三边关系定理及推论的作用:判断三条已知线段能否组成三角形当已知两边时,可确定第三边的范围。证明线段不等关系。7、三角形的内角和定理及推论三角形的内角和定理:三角形三个内角和等于180。推论:直角三角形的两个锐角互余。三角形的一个外角等于和它不相邻的来两个内角的和。三角形的一个外角大于任何一个和它不相邻的内角。名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - -

4、 - - - - 名师精心整理 - - - - - - - 第 1 页,共 13 页 - - - - - - - - - 学习资料收集于网络,仅供参考学习资料注: 在同一个三角形中:等角对等边;等边对等角;大角对大边;大边对大角。8、三角形的面积三角形的面积=21底高考点二、全等三角形1、全等三角形的概念能够完全重合的两个图形叫做全等形。能够完全重合的两个三角形叫做全等三角形。两个三角形全等时,互相重合的顶点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角。夹边就是三角形中相邻两角的公共边,夹角就是三角形中有公共端点的两边所成的角。2、全等三角形的表示和性质全等用符号“”表示,读作

5、“全等于”。如 ABC DEF,读作“三角形ABC 全等于三角形DEF” 。注:记两个全等三角形时,通常把表示对应顶点的字母写在对应的位置上。3、三角形全等的判定三角形全等的判定定理:(1)边角边定理:有两边和它们的夹角对应相等的两个三角形全等(可简写成“边角边”或“SAS” )(2)角边角定理:有两角和它们的夹边对应相等的两个三角形全等(可简写成“角边角”或“ASA ” )(3)边边边定理:有三边对应相等的两个三角形全等(可简写成“边边边”或“SSS ” ) 。直角三角形全等的判定:对于特殊的直角三角形,判定它们全等时,还有HL 定理(斜边、直角边定理):有斜边和一条直角边对应相等的两个直角

6、三角形全等(可简写成“斜边、直角边”或“HL ” )4、全等变换只改变图形的位置,二不改变其形状大小的图形变换叫做全等变换。全等变换包括一下三种:(1)平移变换:把图形沿某条直线平行移动的变换叫做平移变换。(2)对称变换:将图形沿某直线翻折180,这种变换叫做对称变换。(3)旋转变换:将图形绕某点旋转一定的角度到另一个位置,这种变换叫做旋转变换。考点三、等腰三角形1、等腰三角形的性质(1)等腰三角形的性质定理及推论:定理:等腰三角形的两个底角相等(简称:等边对等角)推论 1:等腰三角形顶角平分线平分底边并且垂直于底边。即等腰三角形的顶角平分线、底边上的中线、底边上的高重合。推论 2:等边三角形

7、的各个角都相等,并且每个角都等于60。(2)等腰三角形的其他性质:等腰直角三角形的两个底角相等且等于45等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角)。等腰三角形的三边关系:设腰长为a,底边长为b,则2ba 等腰三角形的三角关系:设顶角为顶角为A, 底角为 B、 C, 则 A=180 2B, B=C=2180A2、等腰三角形的判定等腰三角形的判定定理及推论:定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简称:等角对等边)。这个判定定理常名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名

8、师精心整理 - - - - - - - 第 2 页,共 13 页 - - - - - - - - - 学习资料收集于网络,仅供参考学习资料用于证明同一个三角形中的边相等。推论 1:三个角都相等的三角形是等边三角形推论 2:有一个角是60的等腰三角形是等边三角形。推论 3:在直角三角形中,如果一个锐角等于30,那么它所对的直角边等于斜边的一半。等腰三角形的性质与判定等腰三角形性质等腰三角形判定中线1、等腰三角形底边上的中线垂直底边,平分顶角;2、等腰三角形两腰上的中线相等,并且它们的交点与底边两端点距离相等。1、两边上中线相等的三角形是等腰三角形;2、如果一个三角形的一边中线垂直这条边(平分这个

9、边的对角) ,那么这个三角形是等腰三角形角平分线1、等腰三角形顶角平分线垂直平分底边;2、等腰三角形两底角平分线相等,并且它们的交点到底边两端点的距离相等。1、如果三角形的顶角平分线垂直于这个角的对边(平分对边) ,那么这个三角形是等腰三角形;2、三角形中两个角的平分线相等,那么这个三角形是等腰三角形。高线1、等腰三角形底边上的高平分顶角、平分底边;2、等腰三角形两腰上的高相等,并且它们的交点和底边两端点距离相等。1、如果一个三角形一边上的高平分这条边(平分这条边的对角) ,那么这个三角形是等腰三角形;2、有两条高相等的三角形是等腰三角形。角等边对等角等角对等边边底的一半 腰长 周长的一半两边

10、相等的三角形是等腰三角形4、三角形中的中位线连接三角形两边中点的线段叫做三角形的中位线。(1)三角形共有三条中位线,并且它们又重新构成一个新的三角形。(2)要会区别三角形中线与中位线。三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半。三角形中位线定理的作用:位置关系:可以证明两条直线平行。数量关系:可以证明线段的倍分关系。常用结论:任一个三角形都有三条中位线,由此有:结论 1:三条中位线组成一个三角形,其周长为原三角形周长的一半。结论 2:三条中位线将原三角形分割成四个全等的三角形。结论 3:三条中位线将原三角形划分出三个面积相等的平行四边形。结论 4:三角形一条中线和与它相交的

11、中位线互相平分。结论 5:三角形中任意两条中位线的夹角与这夹角所对的三角形的顶角相等。考点四、相似三角形1、相似三角形的概念对应角相等,对应边成比例的三角形叫做相似三角形。相似用符号“”来表示,读作“相似于”。相似三角形对应边的比叫做相似比(或相似系数)。2、相似三角形的基本定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似。名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 3 页,共 13 页 - - - - - - - - - 学习资料收集于网

12、络,仅供参考学习资料用数学语言表述如下:DE BC, ADE ABC 相似三角形的等价关系:(1)反身性:对于任一ABC ,都有 ABC ABC ;(2)对称性:若ABC ABC,则 ABC ABC (3)传递性:若ABC ABC,并且 ABCABC,则 ABC ABC。3、三角形相似的判定(1)三角形相似的判定方法定义法:对应角相等,对应边成比例的两个三角形相似平行法:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似,可简述为两角对应相等,两三角形相似。判定定理2:如果一

13、个三角形的两条边和另一个三角形的两条边对应相等,并且夹角相等,那么这两个三角形相似,可简述为两边对应成比例且夹角相等,两三角形相似。判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似,可简述为三边对应成比例,两三角形相似(2)直角三角形相似的判定方法以上各种判定方法均适用定理: 如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似垂直法:直角三角形被斜边上的高分成的两个直角三角形与原三角形相似。4、相似三角形的性质(1)相似三角形的对应角相等,对应边成比例(2)相似三角形对应高的比、对应中线的比与对应

14、角平分线的比都等于相似比(3)相似三角形周长的比等于相似比(4)相似三角形面积的比等于相似比的平方。5、相似多边形(1)如果两个边数相同的多边形的对应角相等,对应边成比例,那么这两个多边形叫做相似多边形。相似多边形对应边的比叫做相似比(或相似系数)(2)相似多边形的性质相似多边形的对应角相等,对应边成比例相似多边形周长的比、对应对角线的比都等于相似比相似多边形中的对应三角形相似,相似比等于相似多边形的相似比相似多边形面积的比等于相似比的平方6、位似图形名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - -

15、- - - 第 4 页,共 13 页 - - - - - - - - - 学习资料收集于网络,仅供参考学习资料如果两个图形不仅是相似图形,而且每组对应点所在直线都经过同一个点,那么这样的两个图形叫做位似图形,这个点叫做位似中心,此时的相似比叫做位似比。性质:每一组对应点和位似中心在同一直线上,它们到位似中心的距离之比都等于位似比。由一个图形得到它的位似图形的变换叫做位似变换。利用位似变换可以把一个图形放大或缩小。第二部分解直角三角形考点一、直角三角形的性质(35 分)1、直角三角形的两个锐角互余可表示如下:C=90A+B=902、在直角三角形中,30角所对的直角边等于斜边的一半。A=30可表示

16、如下:BC=21AB C=903、直角三角形斜边上的中线等于斜边的一半ACB=90 可表示如下:CD=21AB=BD=AD D为 AB的中点4、勾股定理直角三角形两直角边a,b 的平方和等于斜边c 的平方,即222cba5、摄影定理在直角三角形中, 斜边上的高线是两直角边在斜边上的摄影的比例中项,每条直角边是它们在斜边上的摄影和斜边的比例中项ACB=90 BDADCD2ABADAC2CD AB ABBDBC26、常用关系式由三角形面积公式可得:AB CD=AC BC 考点二、直角三角形的判定(35 分) 1、有一个角是直角的三角形是直角三角形。2、如果三角形一边上的中线等于这边的一半,那么这个

17、三角形是直角三角形。3、勾股定理的逆定理如果三角形的三边长a,b,c 有关系222cba,那么这个三角形是直角三角形。考点三、锐角三角函数的概念(38 分) 1、如图,在ABC中, C=90 锐 角A 的 对 边 与 斜 边 的 比 叫 做 A 的 正 弦 , 记 为sinA , 即casin斜边的对边AA名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 5 页,共 13 页 - - - - - - - - - 学习资料收集于网络,仅供参考学习资料锐角 A的邻边与斜边的比叫做A的余弦,

18、记为cosA,即cbcos斜边的邻边AA锐角 A的对边与邻边的比叫做A的正切,记为tanA,即batan的邻边的对边AAA锐角 A的邻边与对边的比叫做A的余切,记为cotA,即abcot的对边的邻边AAA2、锐角三角函数的概念锐角 A的正弦、余弦、正切、余切都叫做A的锐角三角函数3、一些特殊角的三角函数值三角函数 0 30 45 60 90 sin 0 2122231 cos1 2322210 tan 0 331 3不存在cot 不存在31 330 4、各锐角三角函数之间的关系(1)互余关系sinA=cos(90A), cosA=sin(90A) tanA=cot(90A),cotA=tan(

19、90A) (2)平方关系1cossin22AA(3)倒数关系tanAtan(90 A)=1 (4)弦切关系tanA=AAcossin5、锐角三角函数的增减性当角度在0 90 之间变化时,(1)正弦值随着角度的增大(或减小)而增大(或减小)(2)余弦值随着角度的增大(或减小)而减小(或增大)(3)正切值随着角度的增大(或减小)而增大(或减小)(4)余切值随着角度的增大(或减小)而减小(或增大)考点四、解直角三角形(35)1、解直角三角形的概念在直角三角形中,除直角外,一共有五个元素,即三条边和两个锐角,由直角三角形中除直角外的已知元素求出所有未知元素的过程叫做解直角三角形。名师资料总结 - -

20、-精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 6 页,共 13 页 - - - - - - - - - 学习资料收集于网络,仅供参考学习资料BPAaOQPNM2、解直角三角形的理论依据在 RtABC 中, C=90, A, B, C 所对的边分别为a,b,c (1)三边之间的关系:222cba(勾股定理)(2)锐角之间的关系:A+B=90(3)边角之间的关系:baBabBcaBcbBabAbaAcbAcaAcot,tan,cos,sin;cot,tan,cos,sin第二部分尺规作图【知识回顾】1、尺规

21、作图的定义:尺规作图是指用没有刻度的直尺和圆规作图。最基本 ,最常用的尺规作图,通常称 基本作图 。一些复杂的尺规作图都是由基本作图组成的。2、五种基本作图:1、作一条线段等于已知线段;2、作一个角等于已知角;3、作已知线段的垂直平分线;4、作已知角的角平分线;5、过一点作已知直线的垂线;(1)题目一:作一条线段等于已知线段。已知:如图,线段a . 求作:线段AB,使 AB = a . 作法:(1)作射线 AP ;(2)在射线 AP上截取 AB=a . 则线段 AB就是所求作的图形。(2)题目二:作已知线段的中点。已知:如图,线段MN. 求作:点O ,使 MO=NO(即 O是 MN的中点) .

22、 作法:()分别以M 、N为圆心,大于的相同线段为半径画弧,两弧相交于P,Q ;()连接PQ交 MN于 O则点 O就是所求作的的中点。名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 7 页,共 13 页 - - - - - - - - - 学习资料收集于网络,仅供参考学习资料ONMBPANMBOAAANOBMOANMMOQNDCPPMBABA(3)题目三:作已知角的角平分线。已知:如图,AOB ,求作:射线OP, 使 AOP BOP (即 OP平分 AOB )。作法:(1)以 O为圆

23、心,任意长度为半径画弧,分别交 OA ,OB于 M ,N;(2)分别以M 、为圆心,大于的线段长为半径画弧,两弧交AOB内于;(3)作射线 OP 。则射线 OP就是 AOB的角平分线。(4)题目四:作一个角等于已知角。已知:如图,AOB 。求作: AO B ,使 AO B =AOB作法:(1)作射线OA;(2)以 O为圆心,任意长度为半径画弧,交OA于 M ,交 OB于 N;(3)以 O 为圆心,以OM的长为半径画弧,交O A于 M ;(4)以 M 为圆心,以MN的长为半径画弧,交前弧于N;(5)连接 O N并延长到B。则 AOB就是所求作的角。(5)题目五:经过直线上一点做已知直线的垂线。已

24、知:如图, P是直线 AB上一点。求作:直线CD ,是 CD经过点 P,且 CD AB 。作法:(1)以 P为圆心,任意长为半径画弧,交AB于 M 、N;(2)分别以M 、N为圆心,大于MN21的长为半径画弧,两弧交于点Q;(3)过 D 、Q作直线 CD 。则直线 CD是求作的直线。名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 8 页,共 13 页 - - - - - - - - - 学习资料收集于网络,仅供参考学习资料cabCbacBAPABBAPQNDCMnCBAmmn(6)题

25、目六:经过直线外一点作已知直线的垂线已知:如图,直线AB及外一点 P。求作:直线CD ,使 CD经过点 P,且 CD AB 。作法:(1)以 P为圆心,任意长为半径画弧,交AB于 M 、N;(2)分别以M 、N圆心,大于MN21长度的一半为半径画弧,两弧交于点Q ;(3)过 P 、Q作直线 CD 。则直线 CD就是所求作的直线。(5)题目七:已知三边作三角形。已知:如图,线段a, b,c. 求作: ABC ,使 AB = c ,AC = b ,BC = a. 作法:(1)作线段 AB = c ;(2)以 A为圆心,以b 为半径作弧,以 B为圆心,以a 为半径作弧与前弧相交于C;(3)连接 AC

26、 ,BC 。则 ABC就是所求作的三角形。题目八:已知两边及夹角作三角形。已知:如图,线段m , n, . 求作: ABC ,使 A=,AB=m ,AC=n. 作法:(1)作 A=;(2)在 AB上截取 AB=m ,AC=n;(3)连接 BC 。则 ABC就是所求作的三角形。题目九:已知两角及夹边作三角形。已知:如图,线段 m . 求作: ABC ,使 A=,B=,AB=m. 作法:名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 9 页,共 13 页 - - - - - - - -

27、- 学习资料收集于网络,仅供参考学习资料CBAm320国道107国道ODCBACBACBAFEDCBAOAB(1)作线段 AB=m ;(2)在 AB的同旁作 A=,作 B=,A与 B的另一边相交于C。则 ABC就是所求作的图形(三角形)。【考点练习 】1、如图 :107 国道 OA 和 320 国道 OB 在某市相交于点O,在AOB 的内部有工厂C 和 D,现要修建一个货站P, 使 P到 OA、 OB 的距离相等且PC=PD,用尺规作出货站P的位置 (不写作法 ,保留作图痕迹 ,写出结论 )2、三条公路两两相交,交点分别为A,B,C,现计划建一个加油站,要求到三条公路的距离相等,问满足要求的加

28、油站地址有几种情况?用尺规作图作出所有可能的加油站地址。3、过点 C 作一条线平行于AB 。4、如图,平行四边形纸条ABCD 中, E、F 分别是边AD 、BC 的中点。张老师请同学们将纸条的下半部分平行四边形 ABEF 沿 EF 翻折,得到一个 V 字形图案。 请你在原图中画出翻折后的图形平行四边形A1B1FE ;(用尺规作图,不写画法,保留作图痕迹)。名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 10 页,共 13 页 - - - - - - - - - 学习资料收集于网络,仅

29、供参考学习资料OBA5、如图,已知方格纸中的每个小方格都是全等的正方形,AOB 画在方格纸上,请用利用格点和直尺(无刻度 )作出 AOB 的平分线。6、小芸在班级办黑板报时遇到一个难题,在版面设计过程中需将一个半圆面三等分,请你帮助他设计一个合理的等分方案,图中AB 为直径, O 为圆心 (要求用尺规作图,保留作图痕迹 )。7、已知线段AB和 CD ,如下图,求作一线段,使它的长度等于AB 2CD. 8、如图,已知 A、 B,求作一个角,使它等于A-B. 名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - -

30、- - - - 第 11 页,共 13 页 - - - - - - - - - 学习资料收集于网络,仅供参考学习资料HGFEBA9、如图,画一个等腰ABC ,使得底边BC=a,它的高 AD=h10、如图,有A,B,C 三个村庄,现要修建一所希望小学,?使三个村庄到学校的距离相等,学校的地址应选在什么地方?请你在图中画出学校的位置并说明理由(?保留作图痕迹) 11、如图, A、B两村在一条小河的的同一侧,要在河边建一水厂向两村供水(1)若要使自来水厂到两村的距离相等,厂址应选在哪个位置?(2)若要使自来水厂到两村的输水管用料最省,厂址应选在哪个位置?请将上述两种情况下的自来水厂厂址标出,并保留作

31、图痕迹.BA . 12、如图, A 为 MON 内一点,试在OM、ON 边上分别作出一点B、C,使 ABC 的周长最小13、如图,已知两点P、Q 在锐角 AOB 内,分别在OA、OB 上求点 M、N,使 PMMNNQ 最短18如图所示, EFGH 是一矩形的台球台面,有黑白两球分别位于A、B 两点位置上,试问:怎样撞击黑球A,使黑球先碰撞台边EF 反弹后再击中白球B?haNAOMQPBOA名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 12 页,共 13 页 - - - - - - - - - 学习资料收集于网络,仅供参考学习资料名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 13 页,共 13 页 - - - - - - - - -

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 高考资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁