《2022年实变函数复习要点定义 .pdf》由会员分享,可在线阅读,更多相关《2022年实变函数复习要点定义 .pdf(6页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2011实变函数复习要点第一章集合(一)考核知识点1. 集合的定义、简单性质及集合的并、交、补和极限运算。2. 对等和基数及其性质。3. 可数集合的概念及其性质。4. 不可数集合的概念及例子。(二)考核要求1. 集合概念识记:集合的概念、表示方法、子集、真子集和包含关系。2. 集合的运算(1)识记:集合的并、交、补概念。De Morgan公式ccAA )(ccAA )((2)综合应用:集合的并、交、补运算。例 利用集合的并、交、补运算证明集合相等。例NnxxAnnn,11:11设0, 11nnA,)1 ,2(1nnA3. 对等与基数(1)识记:集合的对等与基数的概念。(2)综合应用:集合的对等
2、的证明例 利用定义直接构造两集合间的1-1 对应。4. 可数集合(1)识记:可数集合的概念和可数集合的性质,可数集合类。(2)综合应用:可数集合的性质。5. 不可数集合识记:不可数集合的概念、例子。第二章点集(一)考核知识点1. n 维欧氏空间邻域、集合的距离、有界点集和区间体积概念以及邻域的性质。2. 聚点、内点、界点、开核、边界、导集和闭包及其性质。3. 开集、闭集及其性质。4. 直线上的开集的构造,构成区间,康托集。名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 1 页,共 6
3、 页 - - - - - - - - - (二)考核要求1. 度量空间, n 维欧氏空间识记:邻域的概念、有界点集概念。2. 聚点、内点和界点识记:聚点、内点、外点、界点、孤立点、接触点、开核、边界、导集和闭包。如 聚点与内点的关系,界点与聚点、孤立点的关系如聚点的等价定义:设EP0,存在 E 中的互异的点列nP使0limPPnn如0P为 E 的接触点的充要条件为存在E 中点列nP, 使得0limPPnn3. 开集,闭集(1)识记:开集、闭集的概念。(2)综合应用:开集和闭集的充要条件以及开集和闭集的性质。例如何证明一个集合为开集例如何证明一个集合为闭集如 A 为闭集当且仅当A 中的任意收敛点
4、列收敛于A 中的点(即闭集为对极限运算封闭的点集)4. 直线上的开集的构造(1)识记:直线上的开集的构造及构成区间的概念。例设)2,0(1G, )4,3()2,1(2G21GGG, 求 G 的构成区间 . 解:G 的构成区间为 (0,2) 、(3,4) (2)简单应用:康托集Cantor 集的基数为C 第三章测度论(一)考核知识点1. 外测度的定义以及简单性质。2. 可测集的卡氏条件(Caratheodory条件)和可测集的性质。3. 零测度集以及区间、开集和闭集的可测性;Borel 集及其可测性;G型集、F型集;可测集的构成。(二)考核要求1. 外测度(1)综合应用:外测度的定义。如设 B
5、是有理数集,则0BmCantor 集的外测度为0 名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 2 页,共 6 页 - - - - - - - - - 例 两个集合的基数和它们的外测度的关系(2)综合应用:外测度的性质。非负性:0Am单调性:BmAmBA,则若次可数可加性:nnnnAmAm*11*)(2. 可测集(1)识记:可测集的卡氏条件(Caratheodory条件)。(2)分析:可测集的性质。可测集类关于差,余,有限交和可数交,有限并和可数并,以及极限运算封闭3. 可测集类(
6、1)简单应用: 零测度集以及区间、开集和闭集的可测性;Borel 集及其可测性;G型集、F型集。零集、 区间、 开集、 闭集、G型集(可数个开集的交) 、F型集(可数个闭集的并) 、Borel 型集(从开集出发通过取余,取交或并(有限个或可数个)运算得到)都是可测集。例零测度集:单点集、有理数集、康托集例 零测度集与可数集的关系例“开集类” , “波雷尔集类” , “可测集类” , “G型集类”之间的关系。(2)综合应用:可测集的构成。可测集与开集、闭集只相差一小测度集)(,0)1EGmGEGE且,使得开集可测,则若反之也成立,即证明设0,GE开 集使*()mGE,则 E是可测集。)(,0)2
7、FEmEFFE且,使得闭集可测,则若反之也成立,即证明设0,存在闭集EF,使得)(*FEm,则 E 是可测集可测集可由G型集去掉一零集,或F型集添上一零集得到。1) 若 E 可测,则存在G型集G, 使0)(EGmGE且即设 E是 L 可测的, G 是G集,则存在零测集N,使E = G- N.2)若 E 可测,则存在F型集 F, 使0)(FEmEF且即设 E是 L 可测的, F 是F集,则存在零测集N,使 E = F + N. 名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 3 页,共
8、 6 页 - - - - - - - - - 第四章可测函数(一)考核知识点1. 可测函数的定义及其等价定义、可测函数的性质和可测函数与简单函数的关系。2. 叶果洛夫定理及逆定理。3. 鲁津定理及逆定理。4. 依测度收敛的定义、性质、Riesz 定理、勒贝格定理。(二)考核要求1. 可测函数及其性质(1)简单应用:可测函数的定义及其等价定义。(3)综合应用:可测函数的性质。零集上的任何函数都是可测函数简单函数是可测函数可测集 E 上的连续函数f( x) 必为可测函数在一零测度集上改变函数的取值不影响函数的可测性即:设 f(x)=g(x) a.e.于 E, f(x)在 E 上可测,则g(x)在
9、E 上也可测。可测函数关于子集、并集的性质可测函数类关于四则运算封闭可测函数类关于确界运算和极限运算封闭。2. 叶果洛夫定理及逆定理识记:叶果洛夫定理。可测函数列的收敛“基本上”是一致收敛证明叶果洛夫定理的逆定理:设函数列()nfx(1, 2,)n在有界集E上“基本上” 一致收敛于()fx,则(). .nfx a e收敛于()fx。3. 可测函数的构造可测函数和连续函数的关系识记:鲁津定理可测函数“基本上”是连续函数(鲁津定理)。证明鲁津定理的逆定理:设()fx是E上. .a e 有限的函数,若对任意0,存在闭子集FE,使()fx在F上连续,且()m EF,则()fx是E上的可测函数。4. 依
10、测度收敛(1)识记:依测度收敛的定义、性质。(2)综合应用:Riesz 定理、勒贝格定理。处处收敛和依测度收敛的关系一致收敛和依测度收敛的关系名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 4 页,共 6 页 - - - - - - - - - Effn于Euaffn于.Eeaffn于.叶果洛夫定理mE+Lebesgue定理mE+叶果洛夫逆定理子列Riesz 定理子列第五章积分论(一)考核知识点1. 勒贝格积分的定义、勒贝格积分与黎曼积分的关系。2. 勒贝格积分的性质。3. 勒贝格控
11、制收敛定理(二)考核要求1. 勒贝格积分的定义(1)简单应用:勒贝格可积的充要条件。设 f(x)是可测集)(mEREq上的有界函数,则f(x)在 E 上可积的充要条件是f(x)在 E 上可测。(2)分析: L 积分与 R 积分的关系。若有界函数xf在闭区间ba,上黎曼可积, 则xf在ba,上也是勒贝格可积的,且二者积分值相等。xf在ba,上黎曼可积的充要条件是xf在ba,上的不连续点所成之集测度为零。3. 勒贝格积分性质评价:勒贝格积分性质利用积分的性质计算L 积分例QxQxxD1 ,01 ,0,0,1, 0011,01,01,0QQdxxDL5. 积分的极限定理分析:勒贝格控制收敛定理。利用
12、勒贝格(Lebesgue)控制收敛定理计算R 积分名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 5 页,共 6 页 - - - - - - - - - 关于考核目标说明识记(了解) :指能够对有关名词、概念、知识、术语作出正确解释,并能记住和正确表述出来。简单应用(会) :在识记的基础上,能够进一步深入全面地把握基本概念、基本原理,使所学知识融汇贯通,能够正确运用。综合应用(掌握) :能够正确熟练地简单应用所学知识,处理相关一般性问题。分析(熟练掌握) :在理解掌握所学知识的基础上用所学知识分析解决实际问题。评价(融会贯通) :在熟练掌握所学知识,对实际问题分析解决的基础上,并进一步做出评价。名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 6 页,共 6 页 - - - - - - - - -