《最新同济大学第五版高等数学(下)课件D113幂级数幻灯片.ppt》由会员分享,可在线阅读,更多相关《最新同济大学第五版高等数学(下)课件D113幂级数幻灯片.ppt(30页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、同济大学第五版高等数学同济大学第五版高等数学( (下下) )课件课件D113D113幂级数幂级数一、一、 函数项级数的概念函数项级数的概念设121)()()()(nnnxuxuxuxu为定义在区间 I 上的函数项级数函数项级数 .对, I0 x若常数项级数10)(nnxu敛点敛点, 所有收敛点的全体称为其收敛域收敛域 ;若常数项级数10)(nnxu为定义在区间 I 上的函数, 称收敛,发散 ,所有0 x称为其收收 0 x称为其发散点发散点, ),2, 1()(nxun发散点的全体称为其发散域发散域 .机动 目录 上页 下页 返回 结束 xaaxaxannnnnnnn111limlim定理定理2
2、. 若0nnnxa的系数满足,lim1nnnaa;1R;R.0R证证:1) 若 0,则根据比值审敛法可知:当,1x原级数收敛;当,1x原级数发散.x即1x时,1) 当 0 时,2) 当 0 时,3) 当 时,即时,则 1x机动 目录 上页 下页 返回 结束 2) 若, 0则根据比值审敛法可知,;R绝对收敛 ,3) 若,则对除 x = 0 以外的一切 x 原级发散 ,.0R对任意 x 原级数因此因此 0nnnxa的收敛半径为说明说明: :据此定理1limnnnaaR因此级数的收敛半径.1R机动 目录 上页 下页 返回 结束 对端点 x =1, 1limnnnaaRnxxxxnn 132) 1(3
3、2的收敛半径及收敛域.解解:11nn11对端点 x = 1, 级数为交错级数,1) 1(11nnn收敛; 级数为,11nn发散 . . 1, 1(故收敛域为例例1 1.求幂级数 limn 机动 目录 上页 下页 返回 结束 例例2. 求下列幂级数的收敛域 :.!)2(;!1) 1 (00nnnnxnxn解解: (1) limlim1nnnnaaR!1n) 1(limnn所以收敛域为. ),(2) limlim1nnnnaaR!n!) 1( n11limnn0所以级数仅在 x = 0 处收敛 .规定: 0 ! = 1! ) 1(1n机动 目录 上页 下页 返回 结束 例例3.nnxnn202)
4、!(! )2(求幂级数的收敛半径 .解解: 级数缺少奇次幂项,不能直接应用定理2,比值审敛法求收敛半径. lim)()(lim1nnnnxuxu2!) 1( ! ) 1(2nn2!2nn22)1()22( )12(limxnnnn24x142x当时级数收敛时级数发散 故收敛半径为 .21R21x即142x当21x即) 1(2nxnx2故直接由机动 目录 上页 下页 返回 结束 例例4.12) 1(nnnnx求幂级数的收敛域.解解: 令 ,1 xt级数变为nnntn121nnnnaaRlimlim1nn21) 1(211nnnnnnn2) 1(2lim12当 t = 2 时, 级数为,11nn此
5、级数发散;当 t = 2 时, 级数为,) 1(1nnn此级数条件收敛;因此级数的收敛域为,22t故原级数的收敛域为,212x即.31x机动 目录 上页 下页 返回 结束 三、幂级数的运算三、幂级数的运算定理定理3. 设幂级数nnnxa0nnnxb0及的收敛半径分别为,21RR令nnnxa0)(0为常数nnnxa1Rx ,min21RRR nnnnnnxbxa00,)(0nnnnxbaRx ,0nnnxcRx 则有 :nnnnnnxbxa00其中knnkknbac0以上结论可用部分和的极限证明 .机动 目录 上页 下页 返回 结束 说明说明: 两个幂级数相除所得幂级数的收敛半径可能比原来两个幂
6、级数的收敛半径小得多. 例如, 设 nnnxa0nnnxb0),2, 1,0, 1(0naan,3,2,0, 1, 110nbbbn它们的收敛半径均为,R但是nnnxa0nxxx21其收敛半径只是 .1R1x1nnnxb0 x11机动 目录 上页 下页 返回 结束 定理定理4 若幂级数nnnxa0的收敛半径,0R)(xS数(证明见第六节)nnnxaxS0)(,11nnnxan),(RRxxxaxxSnxnnxdd)(000,110nnnxna),(RRx则其和函在收敛域上连续, 且在收敛区间内可逐项求导与逐项求积分, 运算前后收敛半径相同: 注注: 逐项积分时, 运算前后端点处的敛散性不变.机
7、动 目录 上页 下页 返回 结束 解解: 由例2可知级数的收敛半径 R+.例例5.0!nnnx求幂级数0!)(nnnxxS)(x则11! ) 1()(nnnxxS0!kkkx)(xS)(x故有0)(xSexxeCxS)(,)(1)0(xexSS 得由故得.!0 xnnenx的和函数 .因此得设机动 目录 上页 下页 返回 结束 例例6. 1nnxn求幂级数的和函数解解: 易求出幂级数的收敛半径为 1 , x1 时级数发,)1,1(时故当x1)(nnxnxS1)(nnxxxxx12)1 (xx. )(xS11nnxnx1nnxx散,机动 目录 上页 下页 返回 结束 例例7. 求级数01nnnx
8、的和函数. )(xS解解: 易求出幂级数的收敛半径为 1 , 时级数且1x01)(nnnxxS xnnxxx00d1xxxx0d111)1ln(1xx) 10( x1x及收敛 , 有时则当,0 x0111nnnxxxnnxxx00d1机动 目录 上页 下页 返回 结束 ) 1 ,0()0, 1x)(xS, )1ln(1xx因此由和函数的连续性得:)(xS而)0(S,1)1 (lnlim0 xxx, )1ln(1xx,10 x,1) 10( x1x及机动 目录 上页 下页 返回 结束 例例8.2) 1(122的和求数项级数nnn解解: 设,1)(22nnnxxS则, )1, 1(x2112nnn
9、xx21121nnnxx)0( x12nnnxx321nnnxxnnxnnxS111121)(2机动 目录 上页 下页 返回 结束 1nnnx 101dnxnxx而xxxnnd011 xxx01d)1ln(x42)1ln(21)(2xxxxxS故222) 1(1nnn)0( x1212)(nnnxxxxS)2(212xxx21S2ln4385)0( x机动 目录 上页 下页 返回 结束 内容小结内容小结1. 求幂级数收敛域的方法1) 对标准型幂级数先求收敛半径 , 再讨论端点的收敛性 .2) 对非标准型幂级数(缺项或通项为复合式)求收敛半径时直接用比值法或根值法,2. 幂级数的性质两个幂级数在
10、公共收敛区间内可进行加、减与)0(0nnnnaxa也可通过换元化为标准型再求 .乘法运算. 机动 目录 上页 下页 返回 结束 2) 在收敛区间内幂级数的和函数连续;3) 幂级数在收敛区间内可逐项求导和求积分.思考与练习思考与练习 1. 已知nnnxa00 xx 在处条件收敛 , 问该级数收敛半径是多少 ?答答: 根据Abel 定理可知, 级数在0 xx 收敛 ,0 xx 时发散 . 故收敛半径为.0 xR 机动 目录 上页 下页 返回 结束 2. 在幂级数nnnnx02) 1(2中,nnaa1nn) 1(2) 1(2211n 为奇数,23n 为偶数,61能否确定它的收敛半径不存在 ?答答:
11、不能. 因为nnnxu)(lim2) 1(2limxnnn2x当2x时级数收敛 ,2x时级数发散 ,.2R说明说明: 可以证明比值判别法成立根值判别法成立机动 目录 上页 下页 返回 结束 P215 1 (1), (3), (5), (7), (8) 2 (1), (3)P257 7 (1), (4) 8 (1), (3) 作业第四节 目录 上页 下页 返回 结束 阿贝尔阿贝尔(1802 1829)挪威数学家, 近代数学发展的先驱者. 他在22岁时就解决了用根式解5 次方程的不可能性问题 , 他还研究了更广的一 并称之为阿贝尔群. 在级数研究中, 他得 到了一些判敛准则及幂级数求和定理. 论的奠基人之一, 他的一系列工作为椭圆函数研究开拓了道路. 数学家们工作150年. 类代数方程, 他是椭圆函数C. 埃尔米特曾说: 阿贝尔留下的思想可供 后人发现这是一类交换群,备用题备用题 求极限, )(lim221nanaan其中. 1a解解: 令nnanaaS221nkkak1作幂级数,1nnxn设其和为, )(xS易知其收敛半径为 1,则1)(nnxnxS11nnxnx1nnxxxxx12)1 (xxnnSlim)(1aS2) 1( aa机动 目录 上页 下页 返回 结束 30 结束语结束语