高中数学必修2--第四章《圆与方程》知识点总结与练习.doc

上传人:模** 文档编号:34114932 上传时间:2022-08-12 格式:DOC 页数:25 大小:564KB
返回 下载 相关 举报
高中数学必修2--第四章《圆与方程》知识点总结与练习.doc_第1页
第1页 / 共25页
高中数学必修2--第四章《圆与方程》知识点总结与练习.doc_第2页
第2页 / 共25页
点击查看更多>>
资源描述

《高中数学必修2--第四章《圆与方程》知识点总结与练习.doc》由会员分享,可在线阅读,更多相关《高中数学必修2--第四章《圆与方程》知识点总结与练习.doc(25页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、第三节圆_的_方_程知识能否忆起1圆的定义及方程定义平面内与定点的距离等于定长的点的集合(轨迹)标准方程(xa)2(yb)2r2(r0)圆心:(a,b),半径:r一般方程x2y2DxEyF0(D2E24F0)圆心:,半径:2点与圆的位置关系点M(x0,y0)与圆(xa)2(yb)2r2的位置关系:(1)若M(x0,y0)在圆外,则(x0a)2(y0b)2r2.(2)若M(x0,y0)在圆上,则(x0a)2(y0b)2r2.(3)若M(x0,y0)在圆内,则(x0a)2(y0b)20,b0)始终平分圆C:x2y28x2y10,则ab的最大值为()A4B2C1 D.解析:选C圆C的圆心坐标为(4,

2、1),则有4ab40,即4ab4.所以ab(4ab)221.当且仅当a,b2取得等号1圆(x2)2y25关于原点P(0,0)对称的圆的方程为()A(x2)2y25Bx2(y2)25C(x2)2(y2)25 Dx2(y2)25解析:选A圆上任一点(x,y)关于原点对称点为(x,y)在圆(x2)2y25上,即(x2)2(y)25.即(x2)2y25.2(2012辽宁高考)将圆x2y22x4y10平分的直线是()Axy10 Bxy30Cxy10 Dxy30解析:选C要使直线平分圆,只要直线经过圆的圆心即可,圆心坐标为(1,2)A,B,C,D四个选项中,只有C选项中的直线经过圆心3(2012青岛二中期

3、末)若圆C的半径为1,圆心在第一象限,且与直线4x3y0和x轴都相切,则该圆的标准方程是()A(x3)221 B(x2)2(y1)21C(x1)2(y3)21 D.2(y1)21解析:选B依题意设圆心C(a,1)(a0),由圆C与直线4x3y0相切,得1,解得a2,则圆C的标准方程是(x2)2(y1)21.4(2012海淀检测)点P(4,2)与圆x2y24上任一点连线的中点的轨迹方程是()A(x2)2(y1)21 B(x2)2(y1)24C(x4)2(y2)24 D(x2)2(y1)21解析:选A设圆上任一点为Q(x0,y0),PQ的中点为M(x,y),则解得因为点Q在圆x2y24上,所以(2

4、x4)2(2y2)24,即(x2)2(y1)21.5(2013杭州模拟)若圆x2y22x6y5a0,关于直线yx2b成轴对称图形,则ab的取值范围是()A(,4) B(,0)C(4,) D(4,)解析:选A将圆的方程变形为(x1)2(y3)2105a,可知,圆心为(1,3),且105a0,即a2.圆关于直线yx2b对称,圆心在直线yx2b上,即312b,解得b2,ab4.6已知点M是直线3x4y20上的动点,点N为圆(x1)2(y1)21上的动点,则|MN|的最小值是()A. B1C. D.解析:选C圆心(1,1)到点M的距离的最小值为点(1,1)到直线的距离d,故点N到点M的距离的最小值为d

5、1.7如果三角形三个顶点分别是O(0,0),A(0,15),B(8,0),则它的内切圆方程为_解析:因为AOB是直角三角形,所以内切圆半径为r3,圆心坐标为(3,3),故内切圆方程为(x3)2(y3)29.答案:(x3)2(y3)298(2013河南三市调研)已知圆C的圆心与抛物线y24x的焦点关于直线yx对称,直线4x3y20与圆C相交于A,B两点,且|AB|6,则圆C的方程为_解析:设所求圆的半径是R,依题意得,抛物线y24x的焦点坐标是(1,0),则圆C的圆心坐标是(0,1),圆心到直线4x3y20的距离d1,则R2d2210,因此圆C的方程是x2(y1)210.答案:x2(y1)210

6、9(2012南京模拟)已知x,y满足x2y21,则的最小值为_解析:表示圆上的点P(x,y)与点Q(1,2)连线的斜率,所以的最小值是直线PQ与圆相切时的斜率设直线PQ的方程为y2k(x1)即kxy2k0.由1得k,结合图形可知,故最小值为.答案:10过点C(3,4)且与x轴,y轴都相切的两个圆的半径分别为r1,r2,求r1r2.解:由题意知,这两个圆的圆心都在第一象限,且在直线yx上,故可设两圆方程为(xa)2(ya)2a2,(xb)2(yb)2b2,且r1a,r2b.由于两圆都过点C,则(3a)2(4a)2a2,(3b)2(4b)2b2即a214a250,b214b250.则a、b是方程x

7、214x250的两个根故r1r2ab25.11已知以点P为圆心的圆经过点A(1,0)和B(3,4),线段AB的垂直平分线交圆P于点C和D,且|CD|4.(1)求直线CD的方程;(2)求圆P的方程解:(1)直线AB的斜率k1,AB的中点坐标为(1,2)则直线CD的方程为y2(x1),即xy30.(2)设圆心P(a,b),则由P在CD上得ab30.又直径|CD|4,|PA|2,(a1)2b240.由解得或圆心P(3,6)或P(5,2)圆P的方程为(x3)2(y6)240或(x5)2(y2)240.12(2012吉林摸底)已知关于x,y的方程C:x2y22x4ym0.(1)当m为何值时,方程C表示圆

8、;(2)在(1)的条件下,若圆C与直线l:x2y40相交于M、N两点,且|MN|,求m的值解:(1)方程C可化为(x1)2(y2)25m,显然只要5m0,即m5时方程C表示圆(2)因为圆C的方程为(x1)2(y2)25m,其中m5,所以圆心C(1,2),半径r,则圆心C(1,2)到直线l:x2y40的距离为d,因为|MN|,所以|MN|,所以5m22,解得m4.1(2012常州模拟)以双曲线1的右焦点为圆心且与双曲线的渐近线相切的圆的方程是()A(x)2y21 B(x3)2y23C(x)2y23 D(x3)2y29解析:选B双曲线的渐近线方程为xy0,其右焦点为(3,0),所求圆半径r,所求圆

9、方程为(x3)2y23.2由直线yx2上的点P向圆C:(x4)2(y2)21引切线PT(T为切点),当|PT|最小时,点P的坐标是()A(1,1) B(0,2)C(2,0) D(1,3)解析:选B根据切线长、圆的半径和圆心到点P的距离的关系,可知|PT|,故|PT|最小时,即|PC|最小,此时PC垂直于直线yx2,则直线PC的方程为y2(x4),即yx2,联立方程解得点P的坐标为(0,2)3已知圆M过两点C(1,1),D(1,1),且圆心M在xy20上(1)求圆M的方程;(2)设P是直线3x4y80上的动点,PA、PB是圆M的两条切线,A,B为切点,求四边形PAMB面积的最小值解:(1)设圆M

10、的方程为(xa)2(yb)2r2(r0)根据题意,得解得ab1,r2,故所求圆M的方程为(x1)2(y1)24.(2)因为四边形PAMB的面积SSPAMSPBM|AM|PA|BM|PB|,又|AM|BM|2,|PA|PB|,所以S2|PA|,而|PA|,即S2.因此要求S的最小值,只需求|PM|的最小值即可,即在直线3x4y80上找一点P,使得|PM|的值最小,所以|PM|min3,所以四边形PAMB面积的最小值为S222.1在圆x2y22x6y0内,过点E(0,1)的最长弦和最短弦分别为AC和BD,则四边形ABCD的面积为()A5 B10C15 D20解析:选B由题意可知,圆的圆心坐标是(1

11、,3),半径是,且点E(0,1)位于该圆内,故过点E(0,1)的最短弦长|BD|22(注:过圆内一定点的最短弦是以该点为中点的弦),过点E(0,1)的最长弦长等于该圆的直径,即|AC|2,且ACBD,因此四边形ABCD的面积等于|AC|BD|2210.2已知两点A(2,0),B(0,2),点C是圆x2y22x0上任意一点,则ABC面积的最小值是_解析:lAB:xy20,圆心(1,0)到l的距离d,则AB边上的高的最小值为1.故ABC面积的最小值是23.答案:33(2012抚顺调研)已知圆x2y24上一定点A(2,0),B(1,1)为圆内一点,P,Q为圆上的动点(1)求线段AP中点的轨迹方程;(

12、2)若PBQ90,求线段PQ中点的轨迹方程解:(1)设AP的中点为M(x,y),由中点坐标公式可知,P点坐标为(2x2,2y)因为P点在圆x2y24上,所以(2x2)2(2y)24.故线段AP中点的轨迹方程为(x1)2y21.(2)设PQ的中点为N(x,y),在RtPBQ中,|PN|BN|,设O为坐标原点,连接ON,则ONPQ,所以|OP|2|ON|2|PN|2|ON|2|BN|2,所以x2y2(x1)2(y1)24.故线段PQ中点的轨迹方程为x2y2xy10.一、直线与圆的位置关系(圆心到直线的距离为d,圆的半径为r)相离相切相交图形量化方程观点000几何观点drdrdr二、圆与圆的位置关系

13、(O1、O2半径r1、r2,d|O1O2|)相离外切相交内切内含图形量化dr1r2dr1r2|r1r2|d r1r2d|r1r2|d|r1r2|小题能否全取1(教材习题改编)圆(x1)2(y2)26与直线2xy50的位置关系是()A相切B相交但直线不过圆心C相交过圆心 D相离解析:选B由题意知圆心(1,2)到直线2xy50的距离d,0d,故该直线与圆相交但不过圆心2(2012银川质检)由直线yx1上的一点向圆x2y26x80引切线,则切线长的最小值为()A. B2C3 D.解析:选A由题意知,圆心到直线上的点的距离最小时,切线长最小圆x2y26x80可化为(x3)2y21,则圆心(3,0)到直

14、线yx1的距离为2,切线长的最小值为.3直线xy10与圆x2y2r2相交于A,B两点,且AB的长为2,则圆的半径为()A. B.C1 D2解析:选B圆心(0,0)到直线xy10的距离d.则r22d2,r.4(教材习题改编)若圆x2y21与直线ykx2没有公共点,则实数k的取值范围是_解析:由题意知 1,解得k.答案:(, )5已知两圆C1:x2y22x10y240,C2:x2y22x2y80,则两圆公共弦所在的直线方程是_解析:两圆相减即得x2y40.答案:x2y401.求圆的弦长问题,注意应用圆的几何性质解题,即用圆心与弦中点连线与弦垂直的性质,可用勾股定理或斜率之积为1列方程来简化运算2对

15、于圆的切线问题,要注意切线斜率不存在的情况直线与圆的位置关系的判断典题导入例1(2012陕西高考)已知圆C:x2y24x0,l是过点P(3,0)的直线,则()Al与C相交Bl与C相切Cl与C相离 D以上三个选项均有可能自主解答将点P(3,0)的坐标代入圆的方程,得32024391230,y00,则切线方程为x0xy0y1.分别令x0,y0得A,B,则|AB| 2.当且仅当x0y0时,等号成立5(2013兰州模拟)若圆x2y2r2(r0)上仅有4个点到直线xy20的距离为1,则实数r的取值范围为()A(1,) B(1, 1)C(0, 1) D(0, 1)解析:选A计算得圆心到直线l的距离为 1,

16、如图直线l:xy20与圆相交,l1,l2与l平行,且与直线l的距离为1,故可以看出,圆的半径应该大于圆心到直线l2的距离 1.6(2013临沂模拟)已知点P(x,y)是直线kxy40(k0)上一动点,PA,PB是圆C:x2y22y0的两条切线,A,B是切点,若四边形PACB的最小面积是2,则k的值为()A. B.C2 D2解析:选D圆心C(0,1)到l的距离d,所以四边形面积的最小值为22,解得k24,即k2.又k0,即k2.7(2012朝阳高三期末)设直线xmy10与圆(x1)2(y2)24相交于A、B两点,且弦AB的长为2,则实数m的值是_解析:由题意得,圆心(1,2)到直线xmy10的距

17、离d1,即1,解得m.答案:8(2012东北三校联考)若a,b,c是直角三角形ABC三边的长(c为斜边),则圆C:x2y24被直线l:axbyc0所截得的弦长为_解析:由题意可知圆C:x2y24被直线l:axbyc0所截得的弦长为2 ,由于a2b2c2,所以所求弦长为2.答案:29(2012江西高考)过直线xy20上点P作圆x2y21的两条切线,若两条切线的夹角是60,则点P的坐标是_解析:点P在直线xy20上,可设点P(x0,x02),且其中一个切点为M.两条切线的夹角为60,OPM30.故在RtOPM中,有OP2OM2.由两点间的距离公式得OP 2,解得x0.故点P的坐标是( , )答案:

18、( , )10(2012福州调研)已知M:x2(y2)21,Q是x轴上的动点,QA,QB分别切M于A,B两点(1)若|AB|,求|MQ|及直线MQ的方程;(2)求证:直线AB恒过定点解:(1)设直线MQ交AB于点P,则|AP|,又|AM|1,APMQ,AMAQ,得|MP| ,又|MQ|,|MQ|3.设Q(x,0),而点M(0,2),由3,得x,则Q点的坐标为(,0)或(,0)从而直线MQ的方程为2xy20或2xy20.(2)证明:设点Q(q,0),由几何性质,可知A,B两点在以QM为直径的圆上,此圆的方程为x(xq)y(y2)0,而线段AB是此圆与已知圆的公共弦,相减可得AB的方程为qx2y3

19、0,所以直线AB恒过定点.11已知以点C(tR,t0)为圆心的圆与x轴交于点O、A,与y轴交于点O、B,其中O为原点(1)求证:AOB的面积为定值;(2)设直线2xy40与圆C交于点M、N,若|OM|ON|,求圆C的方程解:(1)证明:由题设知,圆C的方程为(xt)22t2,化简得x22txy2y0,当y0时,x0或2t,则A(2t,0);当x0时,y0或,则B,所以SAOB|OA|OB|2t|4为定值(2)|OM|ON|,则原点O在MN的中垂线上,设MN的中点为H,则CHMN,C、H、O三点共线,则直线OC的斜率k,t2或t2.圆心为C(2,1)或C(2,1),圆C的方程为(x2)2(y1)

20、25或(x2)2(y1)25,由于当圆方程为(x2)2(y1)25时,直线2xy40到圆心的距离dr,此时不满足直线与圆相交,故舍去,圆C的方程为(x2)2(y1)25.12在平面直角坐标系xOy中,已知圆x2y212x320的圆心为Q,过点P(0,2),且斜率为k的直线与圆Q相交于不同的两点A、B.(1)求k的取值范围;(2)是否存在常数k,使得向量与共线?如果存在,求k值;如果不存在,请说明理由解:(1)圆的方程可写成(x6)2y24,所以圆心为Q(6,0)过P(0,2)且斜率为k的直线方程为ykx2,代入圆的方程得x2(kx2)212x320,整理得(1k2)x24(k3)x360.直线

21、与圆交于两个不同的点A、B等价于4(k3)2436(1k2)42(8k26k)0,解得k0,即k的取值范围为.(2)设A(x1,y1)、B(x2,y2)则(x1x2,y1y2),由方程得x1x2.又y1y2k(x1x2)4.因P(0,2)、Q(6,0),(6,2),所以与共线等价于2(x1x2)6(y1y2),将代入上式,解得k.而由(1)知k,故没有符合题意的常数k.1已知两圆x2y210x10y0,x2y26x2y400,则它们的公共弦所在直线的方程为_;公共弦长为_解析:由两圆的方程x2y210x10y0,x2y26x2y400,相减并整理得公共弦所在直线的方程为2xy50.圆心(5,5)到直线2xy50的距离为2,弦长的一半为,得公共弦长为2.答案:2xy5022(2012上海模拟)已知圆的方程为x2y26x8y0,a1,a2,a11是该圆过点(3,5)的11条弦的长,若数列a1,a2,a11成等差数列,则该等差数列公差的最

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 初中资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁