数列解题技巧18页word文档.doc

上传人:1595****071 文档编号:34074366 上传时间:2022-08-12 格式:DOC 页数:18 大小:1.96MB
返回 下载 相关 举报
数列解题技巧18页word文档.doc_第1页
第1页 / 共18页
数列解题技巧18页word文档.doc_第2页
第2页 / 共18页
点击查看更多>>
资源描述

《数列解题技巧18页word文档.doc》由会员分享,可在线阅读,更多相关《数列解题技巧18页word文档.doc(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、如有侵权,请联系网站删除,仅供学习与交流数列解题技巧【精品文档】第 18 页第四讲 数列与探索性新题型的解题技巧【命题趋向】从2007年高考题可见数列题命题有如下趋势:1.等差(比)数列的基本知识是必考内容,这类问题既有选择题、填空题,也有解答题;难度易、中、难三类皆有.2.数列中an与Sn之间的互化关系也是高考的一个热点.3.函数思想、方程思想、分类讨论思想等数学思想方法在解决问题中常常用到,解答试题时要注意灵活应用.4.解答题的难度有逐年增大的趋势,还有一些新颖题型,如与导数和极限相结合等.因此复习中应注意:1.数列是一种特殊的函数,学习时要善于利用函数的思想来解决.如通项公式、前n项和公

2、式等.2.运用方程的思想解等差(比)数列,是常见题型,解决此类问题需要抓住基本量a1、d(或q),掌握好设未知数、列出方程、解方程三个环节,常通过“设而不求,整体代入”来简化运算.3.分类讨论的思想在本章尤为突出.学习时考虑问题要全面,如等比数列求和要注意q=1和q1两种情况等等.4.等价转化是数学复习中常常运用的,数列也不例外.如an与Sn的转化;将一些数列转化成等差(比)数列来解决等.复习时,要及时总结归纳.5.深刻理解等差(比)数列的定义,能正确使用定义和等差(比)数列的性质是学好本章的关键.6.解题要善于总结基本数学方法.如观察法、类比法、错位相减法、待定系数法、归纳法、数形结合法,养

3、成良好的学习习惯,定能达到事半功倍的效果.7数列应用题将是命题的热点,这类题关键在于建模及数列的一些相关知识的应用.【考点透视】1理解数列的概念,了解数列通项公式的意义,了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项.2理解等差数列的概念,掌握等差数列的通项公式与前n项和公式,并能运用公式解答简单的问题.3理解等比数列的概念,掌握等比数列的通项公式与前n项和公式,并能运用公式解决简单的问题.4数列是高中数学的重要内容,又是学习高等数学的基础,所以在高考中占有重要的地位.高考对本章的考查比较全面,等差数列,等比数列的考查每年都不会遗漏.解答题多为中等以上难度的试题,突出考查考

4、生的思维能力,解决问题的能力,试题大多有较好的区分度.有关数列的试题经常是综合题,经常把数列知识和指数函数、对数函数和不等式的知识综合起来,试题也常把等差数列、等比数列,求极限和数学归纳法综合在一起。探索性问题是高考的热点,常在数列解答题中出现。本章中还蕴含着丰富的数学思想,在主观题中着重考查函数与方程、转化与化归、分类讨论等重要思想,以及配方法、换元法、待定系数法等基本数学方法.应用问题考查的重点是现实客观事物的数学化,常需构造数列模型,将现实问题转化为数学问题来解决.【例题解析】考点1 正确理解和运用数列的概念与通项公式理解数列的概念,正确应用数列的定义,能够根据数列的前几项写出数列的通项

5、公式.典型例题例1(2006年广东卷)在德国不来梅举行的第48届世乒赛期间,某商店橱窗里用同样的乒乓球堆成若干堆“正三棱锥”形的展品,其中第1堆只有1层,就一个球;第2,3,4,堆最底层(第一层)分别按图4所示方式固定摆放,从第二层开始,每层的小球自然垒放在下一层之上,第n堆第n层就放一个乒乓球,以f (n)表示第n堆的乒乓球总数,则;(答案用n表示). 思路启迪:从图中观察各堆最低层的兵乓球数分别是12,3,4, 推测出第n层的球数。解答过程:显然.第n堆最低层(第一层)的乒乓球数,第n堆的乒乓球数总数相当于n堆乒乓球的低层数之和,即所以:例2(2007年湖南卷理)将杨辉三角中的奇数换成1,

6、偶数换成0,得到如图所示的0-1三角数表从上往下数,第1次全行的数都为1的是第1行,第2次全行的数都为1的是第3行,第次全行的数都为1的是第 行;第61行中1的个数是 第1行 1 1第2行 1 0 1第3行 1 1 1 1 第4行 1 0 0 0 1 第5行 1 1 0 0 1 1思路启迪:计算图形中相应1的数量的特征,然后寻找它们之间的规律。解:第1次全行的数都为1的是第=1行,第2次全行的数都为1的是第=3行,第3次全行的数都为1的是第=7行,第次全行的数都为1的是第行;第61行中1的个数是=32应填,32考点2 数列的递推关系式的理解与应用 在解答给出的递推关系式的数列问题时,要对其关系

7、式进行适当的变形 ,转化为常见的类型进行解题。如“逐差法”若且;我们可把各个差列出来进行求和,可得到数列的通项. 再看“逐商法”即且,可把各个商列出来求积。另外可以变形转化为等差数列与等比数列,利用等差数列与等比数列的性质解决问题。例3(2007年北京卷理)数列中,(是常数,),且成公比不为的等比数列(I)求的值;(II)求的通项公式思路启迪:(1)由成公比不为的等比数列列方程求;(2)可根据递推公式写出数列的前几项,然后分析每一项与该项的序号之间的关系,归纳概括出an与n之间的一般规律,从而作出猜想,写出满足前4项的该数列的一个通项公式.解:(I),因为成等比数列,所以,解得或当时,不符合题

8、意舍去,故(II)当时,由于所以又,故当时,上式也成立,所以小结:从特殊的事例,通过分析、归纳、抽象总结出一般规律,再进行科学地证明,这是创新意识的具体体现,这种探索问题的方法,在解数列的有关问题中经常用到,应引起足够的重视.例4(2006年广东卷)已知数列满足,若, 则 ( B )() () () () 思路启迪:对递推关系变形,运用叠加法求得,特别注意的是对两边同时运用.解答过程:, .相叠加.解答过程2:由得: ,因为.所以:.解答过程3:由得:从而 ;.叠加得:. , 从而.小结:数列递推关系是近几年高高数学的热点,主要是一些能转化为等差等比数列的递推关系式。对连续两项递推,可转化为;

9、对连续三项递推的关系如果方程有两个根,则上递推关系式可化为或.考点3 数列的通项与前n项和之间的关系与应用与的关系:,数列前n项和和通项是数列中两个重要的量,在运用它们的关系式时,一定要注意条件,求通项时一定要验证是否适合。解决含与的式子问题时,通常转化为只含或者转化为只的式子.例5(2006年辽宁卷) 在等比数列中,前项和为,若数列也是等比数列,则等于( )(A) (B) (C) (D)命题目的:本题考查了等比数列的定义和求和公式,着重考查了运算能力。过程指引因数列为等比,则,因数列也是等比数列,则即,所以,故选择答案C.例6.已知在正项数列a n中,S n表示前n项和且,求a n.思路启迪

10、:转化为只含或者只含的递推关系式.解答过程1:由已知,得当n=1时,a1=1;当n2时,a n= S nS n1,代入已知有,.,又,故.,是以1为首项,1为公差的等差数列,故.解答过程2:由已知,得当n=1时,a1=1;当n2时因为,所以.,因为,所以,所以.考点4. 数列中与n有关的等式的理解与应用对数列中的含n的式子,注意可以把式子中的n换为得到另外的式子。也可以把n取自然数中的具体的数1,2,3等,得到一些等式归纳证明.例7(2006年福建卷)已知数列满足 (nN)()求数列的通项公式;()若数列满足 (nN*),证明: 是等差数列;思路启迪:本小题主要考查数列基本知识,考查化归的数学

11、思想方法,考查综合解题能力。把递推关系式变形转化解答过程: (I)解:是以为首项,2为公比的等比数列。即(II)证法一: ,得即,得即故是等差数列.考点5 等差、等比数列的概念与性质的理解与应用在等差、等比数列中,已知五个元素或,中的任意三个,运用方程的思想,便可求出其余两个,即“知三求二”。本着化多为少的原则,解题时需抓住首项和公差(或公比)。另外注意等差、等比数列的性质的运用.例如(1)等差数列中,若,则;等比数列中,若,则 . (2)等差数列中,成等差数列。其中是等差数列的前n项和;等比数列中(),成等比数列。其中是等比数列的前n项和;(3)在等差数列中,项数n成等差的项也称等差数列.

12、(4)在等差数列中,; .在复习时,要注意深刻理解等差数列与等比数列的定义及其等价形式.注意方程思想、整体思想、分类讨论思想、数形结合思想的运用.典型例题例8(2006年江西卷)已知等差数列的前n项和为Sn,若,且A、B、C三点共线(该直线不过原点O),则S200( )A100 B. 101 C.200 D.201命题目的:考查向量性质、等差数列的性质与前n项和。过程指引:依题意,a1a2001,故选A例9(2007年安徽卷文、理)某国采用养老储备金制度,公民在就业的第一年就交纳养老储备金,数目为a1,以后每年交纳的数目均比上一年增加 d(d0), 因此,历年所交纳的储备金数目a1, a2,

13、是一个公差为 d 的等差数列. 与此同时,国家给予优惠的计息政府,不仅采用固定利率,而且计算复利. 这就是说,如果固定年利率为r(r0),那么, 在第n年末,第一年所交纳的储备金就变为 a1(1+r)n1,第二年所交纳的储备金就变成 a2(1+r)n2,. 以Tn表示到第n年末所累计的储备金总额.()写出Tn与Tn1(n2)的递推关系式;()求证Tn=An+ Bn,其中An是一个等比数列,Bn是一个等差数列.命题目的:本小题主要考查等差数列、等比数列的基本概念和基本方法,考查学生阅读资料、提取信息、建立数字模型的能力,考查应用所学知识分析和解决实际问题的能力. 解:(I)我们有 (II)反复使

14、用上述关系式,得在式两端同乘1+r,得,得2解综合题要总揽全局,尤其要注意上一问的结论可作为下面论证的已知条件,在后面求解的过程中适时应用考点6 等差、等比数列前n项和的理解与应用等差、等比数列的前n项和公式要深刻理解,等差数列的前n项和公式是关于n的二次函数.等比数列的前n项和公式(),因此可以改写为是关于n的指数函数,当时,.例10(2007年广东卷理)已知数列的前n项和Sn=n29n,第k项满足5ak8,则k=A9B8C7D6思路启迪:本小题主要考查数列通项和等差数列等基本知识,考查逻辑思维能力、分析问题和解决问题的能力解:此数列为等差数列,由52k-10a;(3)记(n=1,2,),求

15、数列bn的前n项和Sn思路启迪:(1)注意应用根与系数关系求的值;(2)注意先求;(3)注意利用的关系解:(1),是方程f(x)=0的两个根, (2),=,由基本不等式可知(当且仅当时取等号),同,样,(n=1,2,) (3),而,即,同理,又【专题训练与高考预测】一.选择题1.已知a是等比数列,且a0,aa+2 aa+aa=25,那么a+ a的值等于( )A.5 B.10 C.15. D.202.在等差数列a中,已知a+a+a+a+a= 20,那么a等于( ) A.4 B.5 C.6 D7.3.等比数列an的首项a1=1,前n项和为Sn,若,则Sn等于( ) C.2D.24.已知二次函数y=

16、a(a+1)x2(2a+1)x+1,当a=1,2,n,时,其抛物线在x轴上截得的线段长依次为d1,d2,,dn,则 (d1+d2+dn)的值是( )A.1 B.2C.3D.4二.填空题5.已知a,b,a+b成等差数列,a,b,ab成等比数列,且0logm(ab)0,S130知q0,因aa+2 aa+ aa=25,所以,aq aq+2aqaq+aqaq=25,即aq(1+ q)=25, aq(1+ q)=5,得a+ a= aq+aq= aq(1+ q)=5 . 故选择答案A .解法二:因a是等比数列,aa= a,aa= a ,原式可化为 a+2 aa+ a=25, 即(a+ a)=25.因 a0

17、 , a+ a= 5 , 故选择答案A2. 解法一:因为a是等差数列,设其首项为a,公差为d, 由已知 a+ a+a+a+a= 20 有 5 a+10d = 20, a+2d = 4, 即 a= 4.故选择答案A. 解法二:因a是等差数列,所以 a+ a= a+ a=2 a, 由已知 a+a+a+a+a= 20 得5 a= 20, a= 4. 故选择答案A3.解析:利用等比数列和的性质.依题意,而a1=1,故q1,根据等比数列性质知S5,S10S5,S15S10,也成等比数列,且它的公比为q5,q5=,即q=.故选择答案B.4.解析:当a=n时y=n(n+1)x2(2n+1)x+1由x1x2=

18、,得dn=,d1+d2+dn故选择答案A.二、5.解析:解出a、b,解对数不等式即可.故填答案:(,8)6.解析:利用S奇/S偶=得解.故填答案:第11项a11=29.故填答案:1+.8.解析:由题意所有正三角形的边长构成等比数列an,可得an=,正三角形的内切圆构成等比数列rn,可得rn=a,这些圆的周长之和c=2(r1+r2+rn)= a2,面积之和S=(n2+r22+rn2)= a2故填答案:周长之和a,面积之和a29.解析:第一次容器中有纯酒精ab即a(1)升,第二次有纯酒精a(1),即a(1)2升,故第n次有纯酒精a(1)n升.故填答案:a(1)n10.解析:从2001年到2005年

19、每年的国内生产总值构成以95933为首项,以7.3%为公比的等比数列,a5=95933(1+7.3%)4120000(亿元).故填答案:120000.三、11. 解:因为 a为等比数列, 所以 S,SS,SS是等比数列.即 5,155,S15是等比数列,得5(S15)=10 , S=35.12.解:设等差数列a共有2n1 项,S=80,S=75,则=,得 n=16,所以 2n1=2161=31 即此数列共有31项. 又由a的项数为2n1,知其中间项是a,故a= SS=8075=5, a=5.13. 解:设等差数列a中,前m项的和为S,其中奇数项之和为S,偶数项之和为S,由题意得S=77,S=3

20、3,S= SS= 44,令m=2n1则 =,得n =4,m=7, a=SS=11,又aa=18,得首项为20,公差为3,故通项公式为a=3 n+23.14.(1)解:依题意有:解之得公差d的取值范围为d3.(2)解法一:由d0可知a1a2a3a12a13,因此,在S1,S2,S12中Sk为最大值的条件为:ak0且ak+10,即a3=12,,d0,2k3.d3,4,得5.5k7.因为k是正整数,所以k=6,即在S1,S2,S12中,S6最大.解法二:由d0得a1a2a12a13,因此,若在1k12中有自然数k,使得ak0,且ak+10,则Sk是S1,S2,S12中的最大值.由等差数列性质得,当m

21、、n、p、qN*,且m+n=p+q时,am+an=ap+aq.所以有:2a7=a1+a13=S130,a70,a7+a6=a1+a12=S120,a6a70,故在S1,S2,S12中S6最大.解法三:依题意得:最小时,Sn最大;d3,6(5)6.5.从而,在正整数中,当n=6时,n (5)2最小,所以S6最大.15.解:(1)由题意知a52=a1a17,即(a1+4d)2=a1(a1+16d)a1d=2d2,d0,a1=2d,数列的公比q=3,=a13n1又=a1+(bn1)d=由得a13n1=a1.a1=2d0,bn=23n11.(2)Tn=Cb1+Cb2+Cbn=C (2301)+C(2311)+C(23n11)=(C+C32+C3n)(C+C+C)=(1+3)n1(2n1)= 4n2n+,

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 小学资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁