《2021-2022学年高一上学期数学 人教A版(2019)必修第一册第五章正弦、余弦函数的周期性和奇偶性 练习word版含答案.doc》由会员分享,可在线阅读,更多相关《2021-2022学年高一上学期数学 人教A版(2019)必修第一册第五章正弦、余弦函数的周期性和奇偶性 练习word版含答案.doc(6页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、正弦、余弦函数的周期性和奇偶性【基础巩固】1.函数y2sin(4x) 的图象关于()Ax轴对称B原点对称 Cy轴对称 D直线x对称2对于函数ysin(2x),下列命题正确的是()A函数是周期为2的偶函数 B函数是周期为2的奇函数C函数是周期为的偶函数 D函数是周期为的奇函数3 在以下函数中,偶函数的个数有( )个(x)xcos(x); f (x)sin f (x) x2sin xA 1 B 2 C 3 D 44已知f(x)ax3bxcos x1,f(m)100,则f(m)()A99 B98 C99 D1005(多选)下列函数中,以为周期的偶函数是()Ayco Bysin Cy|2cos x|
2、Dy|sin x|6.(多选)下列关于函数f(x)sin(x)的说法错误的是()A对任意的,f(x)都是非奇非偶函数 B存在,使f(x)是偶函数C存在,使f(x)是奇函数 D对任意的,f(x)都不是偶函数7.已知函数f(x)cos (x)(A0,0,R),则“f(x)是奇函数”是“”的()A充分不必要条件B必要不充分条件C充分必要条件D既不充分也不必要条件8.若函数f(x)的定义域为R,最小正周期为,且满足(x)=则f=_.【能力提升】9.函数y=xcos x-sin x的部分图象大致为()10已知函数f(x)x2cos x若x1x20,则()Af(x1)f(x2)Cf(x1)f(x2)0 D
3、f(x1)f(x2)0 11已知函数ysinx|sinx|.(1)画出函数的简图;(2)这个函数是周期函数吗?如果是,求出它的最小正周期【思维拓展】12已知函数f(n)sin,nZ.求f(1)f(2)f(3)f(2 021)的值13.定义在R上的函数f(x)既是偶函数又是周期函数,若f(x)的最小正周期是,且当x时,f(x)=sin x.(1)求当x-,0时,f(x)的解析式;(2)画出函数f(x)在区间-,上的简图;(3)求当f(x)时x的取值范围答案:1.【解析】:选By2sin(4x)2sin 4x 函数的定义域为R,关于原点对称 f(x)是奇函数,其图象关于原点对称2.解析因为函数ys
4、in(2x)cos2x,T,且ycos2x是偶函数,所以ysin(2x)是周期为的偶函数3 解析选B 函数的定义域为R,关于原点对称f(x)xcos(x)xcosx,f(x)(x)cos(x)xcosxf(x)f(x)是奇函数由诱导公式知f (x)sin cos x,函数f (x)的定义域为R,关于原点对称,是偶函数。函数f (x)定义域为R,关于原点对称,f(x)是偶函数函数f (x)定义域为R,关于原点对称f(x)(x)2sin(x)x2sin xf(x,所以为奇函数故偶函数有2个4【解析】:选B法一 : f(m)=am3bmcosm+1=100 (1) f(m)=am3bmcosm+1
5、=(am3+bmcosm)+1 由式(1)得 am3bmcosm=99f(m)=(am3+bmcosm)+1=98法二:设g(x)f(x)1ax3bxcos x,定义域为R,由g(x)a(x)3b(x)cos(x)(ax3bxcos x)g(x),得函数g(x)为奇函数,故g(x)f(x)1,故f(m)1 f(m-1,由f(m)100,所以f(m)98. 5.【解析】:选BDA选项,因为ycos的最小正周期为T2,所以不是以为周期;B选项,因为ysin的最小正周期为T,是以为周期,又ysinsinsin()cos 2x显然是偶函数,满足题意;C选项,因为,所以y|2cos x|不是以为周期;D
6、选项,所以y|sin x|是以为周期,又,所以y|sin x|是偶函数6解析0时,f(x)sinx是奇函数;时,f(x)cosx是偶函数,所以B、C中的说法正确,A、D中的说法错误,故选AD函数,满足题意7.解析 选B,若是奇函数,则+k.兀(kz),=不一定成立;而=时,f(x)为奇函数,所以“是奇函数”是“=”的必要不充分条件.故选 B.8【解析】由最小正周期为,知f=f=f=sin =.答案:9【解析】选C.函数y=f(x)=xcos x-sin x满足f(-x)=-f(x),又xR,则该函数为奇函数,图象关于原点对称,故排除B;当x=时,y=f()=cos -sin =-0,故排除A;
7、又因为,故排除D.温馨提示:注意不要看过题目后,就自己直接画图,那样难度是很大的,要想办法利用特殊值、奇偶性,根据题目的选择项等寻找答案.10【解析】:选D由f(x)x2cos x,则f(x)(x)2cos(x)x2cos xf(x),所以函数为偶函数,又x1x20,则x1x2,所以f(x1)f(x2)xcos x1(xcos x2)(x2)2cos(x2)(xcos x2)xcos x2(xcos x2)0.故选D.11.解析(1)ysinx|sinx|函数图象如图所示(2)由图象知该函数是周期函数,其图象每隔2重复一次,则函数的周期是2.12【解析】f(x)sin,T8,又f(1)sin,
8、f(2)sin1,f(3)sin ,f(4)sin 0,f(5)sin ,f(6)sin 1,f(7)sin ,f(8)sin 20,f(1)f(2)f(8)0,又2 02125285,f(1)f(2)f(3)f(2 021)10.252f(1)f(2)f(8)f(1)f(2)f(3)f(4)f(5)101.13【解析】1)f(x)是偶函数,f(-x)=f(x).当x时,f(x)=sinx,当x时,f(x)=f(-x)=sin(-x)=-sinx.又当x时,x+,f(x)的周期为,f(x)=f(+x)=sin(+x)=-sinx.当x-,0时,f(x)=-sinx.(2)如图.(3)在区间0,内,当f(x)=时,x=,在区间0,内,f(x)时,x.又f(x)的周期为,当f(x)时,x,kZ.