《平移型“将军饮马”问题解法大全-6页文档资料.doc》由会员分享,可在线阅读,更多相关《平移型“将军饮马”问题解法大全-6页文档资料.doc(6页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、如有侵权,请联系网站删除,仅供学习与交流平移型“将军饮马”问题解法大全【精品文档】第 6 页平移型“将军饮马”问题解法大全如下图,大家都熟悉求两条线段和最短的“将军饮马”模型,就是通过对称把同侧两定点转化为异侧两定点,再利用两点之间线段最短,找到我们要得的动点,进而求出最短距离。在直线l上找一动点P,使得PA+PB之和最短,就是我们熟知的“将军饮马”模型,即(“两定一动型”-两个定点+一个动点)。如果本题拓展为在直线l上找两个动点P、Q(PQ两动点间距离为定值),使得AP+PQ+BQ的距离之和最短,又该如何处理呢?(“两动一定型”)法一:先对称后平移作定点A关于动点所在直线(河)的对称点A,将
2、点A沿直线平移PQ的长度得A”,连接A”B,则交直线(河)于点Q,将点Q沿直线反向平移PQ个长度得点P,即此时AP+PQ+BQ最短.思路:作对称(同侧变异侧)-对称点平移定长线段(“一定两动”化“两定一动”)-连接两定点-动点反向平移定长线段-连接所得点.法二:先平移后对称将点A沿直线平移PQ的长度得A,作定点A关于动点所在直线(河)的对称点A”,连接A”B,则交直线(河)于点Q,将点Q沿直线反向平移PQ个长度得点P,即此时AP+PQ+BQ最短.思路:定点平移定长线段(“一定两动”化“两定一动”)-作对称(同侧变异侧)-连接两定点-动点反向平移定长线段-连接所得点.作图模型:对称+平移+连接+
3、反向平移+连接简析:典型的“平移型将军饮马问题”(要将“一定两动”转变为“两定一动”问题即转化为“饮马问题”).具体思路均是构造定点关于动点所在直线(河)的对称点.反思:“平移型将军饮马”问题,需通过平移定线段转化为“将军饮马”问题来解决.具体思路可“先对称后平移”,也可“先平移后对称”.通过平移将一定点变为两定点,再将同侧定点通过对称转变为异侧定点,连接原定点和对称点即可得最短距离.(思路:定点沿河平移定长,作出对称点,连接异侧两定点)简析:典型的“平移型将军饮马问题”(要将“一定两动”转变为“两定一动”问题即转化为“饮马问题”).具体思路均是构造定点关于动点所在直线(河)的对称点.简析:非
4、典型的“平移型将军饮马问题”(要将“一定两动”转变为“两定一动”问题即转化为“饮马问题”,但本题2动点不同在河上是难点).具体思路均是构造定点关于动点所在直线(河)的对称点.反思:“平移型将军饮马”问题,需通过平移定线段转化为“将军饮马”问题来解决.具体思路可“先对称后平移”,也可“先平移后对称”.通过平移将一定点变为两定点,再将同侧定点通过对称转变为异侧定点,将动点平移到异侧定点连线上即可得最短距离.(思路:定点沿河平移定长,作出对称点,连接异侧两定点,平移动点至定点连线上)反思:非典型的“平移型将军饮马”问题,需要我们有化动为定思想,将某动点看作定点,再通过平移定线段转化为“将军饮马”问题
5、来解决.具体思路可“先对称后平移”,也可“先平移后对称”.(思路:定点沿河平移定长,作出对称点,连接异侧两定点,平移动点至定点连线上)本质为转化思想:化同侧为异侧(对称变换)平移定距离(平移变换)化折线为直线(两点之间线段最短) 总结:“平移型将军饮马”又可细分为以下4种类型:典型的“平移型将军饮马”(一定两动型-动点均在直线“河”上)作对称+再平移(化为“两定一动”)+去连接+反平移非典型的“平移型将军饮马”(一定两动型-动点只有1点在直线“河”上)作对称+再平移+去连接+另一动点反平移至直线非典型的“平移型将军饮马”(三动点型)假定某动为定点+作对称+再平移(化为“两定一动”)+去连接+反平移非典型的“平移型将军饮马”(两定两动)即“造桥选址”问题先沿河垂直方向平移桥长+连接+反向平移.