《2019山东省泰安市中考数学试卷解析版.doc》由会员分享,可在线阅读,更多相关《2019山东省泰安市中考数学试卷解析版.doc(31页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2019年山东省泰安市中考数学试卷一、选择题(本大题共12小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得4分,选错、不选或选出的答案超过一个,均记零分)1(4分)在实数|3.14|,3,中,最小的数是()AB3C|3.14|D2(4分)下列运算正确的是()Aa6a3a3Ba4a2a8C(2a2)36a6Da2+a2a43(4分)2018年12月8日,我国在西昌卫星发射中心成功发射“嫦娥四号”探测器,“嫦娥四号”进入近地点约200公里、远地点约42万公里的地月转移轨道,将数据42万公里用科学记数法表示为()A4.2109米B4.2108米C42107米D4.
2、2107米4(4分)下列图形:是轴对称图形且有两条对称轴的是()ABCD5(4分)如图,直线1112,130,则2+3()A150B180C210D2406(4分)某射击运动员在训练中射击了10次,成绩如图所示:下列结论不正确的是()A众数是8B中位数是8C平均数是8.2D方差是1.27(4分)不等式组的解集是()Ax2Bx2C2x2D2x28(4分)如图,一艘船由A港沿北偏东65方向航行30km至B港,然后再沿北偏西40方向航行至C港,C港在A港北偏东20方向,则A,C两港之间的距离为()kmA30+30B30+10C10+30D309(4分)如图,ABC是O的内接三角形,A119,过点C的
3、圆的切线交BO于点P,则P的度数为()A32B31C29D6110(4分)一个盒子中装有标号为1,2,3,4,5的五个小球,这些球除标号外都相同,从中随机摸出两个小球,则摸出的小球标号之和大于5的概率为()ABCD11(4分)如图,将O沿弦AB折叠,恰好经过圆心O,若O的半径为3,则的长为()ABC2D312(4分)如图,矩形ABCD中,AB4,AD2,E为AB的中点,F为EC上一动点,P为DF中点,连接PB,则PB的最小值是()A2B4CD二、填空题(本大题共6小题,满分24分,只要求填写最后结果,每小题填对得4分)13(4分)已知关于x的一元二次方程x2(2k1)x+k2+30有两个不相等
4、的实数根,则实数k的取值范围是 14(4分)九章算术是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等,交易其一,金轻十三两,问金、银一枚各重几何?”意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等,两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计),问黄金、白银每枚各重多少两?设每枚黄金重x两,每枚白银重y两,根据题意可列方程组为 15(4分)如图,AOB90,B30,以点O为圆心,OA为半径作弧交AB于点A、点C,交OB于点D,若OA3,则阴影都分的面积为 16(4分)若二次函数yx2+bx5的
5、对称轴为直线x2,则关于x的方程x2+bx52x13的解为 17(4分)在平面直角坐标系中,直线l:yx+1与y轴交于点A1,如图所示,依次作正方形OA1B1C1,正方形C1A2B2C2,正方形C2A3B3C3,正方形C3A4B4C4,点A1,A2,A3,A4,在直线l上,点C1,C2,C3,C4,在x轴正半轴上,则前n个正方形对角线长的和是 18(4分)如图,矩形ABCD中,AB3,BC12,E为AD中点,F为AB上一点,将AEF沿EF折叠后,点A恰好落到CF上的点G处,则折痕EF的长是 三、解答题(本大题共7小题,满分78分,解答应写出必要的文字说明、证明过程或推演步骤)19(8分)先化简
6、,再求值:(a9+)(a1),其中a20(8分)为弘扬泰山文化,某校举办了“泰山诗文大赛”活动,从中随机抽取部分学生的比赛成绩,根据成绩(成绩都高于50分),绘制了如下的统计图表(不完整):组别分数人数第1组90x1008第2组80x90a第3组70x8010第4组60x70b第5组50x603请根据以上信息,解答下列问题:(1)求出a,b的值;(2)计算扇形统计图中“第5组”所在扇形圆心角的度数;(3)若该校共有1800名学生,那么成绩高于80分的共有多少人?21(11分)已知一次函数ykx+b的图象与反比例函数y的图象交于点A,与x轴交于点B(5,0),若OBAB,且SOAB(1)求反比例
7、函数与一次函数的表达式;(2)若点P为x轴上一点,ABP是等腰三角形,求点P的坐标22(11分)端午节是我国的传统节日,人们素有吃粽子的习俗某商场在端午节来临之际用3000元购进A、B两种粽子1100个,购买A种粽子与购买B种粽子的费用相同已知A种粽子的单价是B种粽子单价的1.2倍(1)求A、B两种粽子的单价各是多少?(2)若计划用不超过7000元的资金再次购进A、B两种粽子共2600个,已知A、B两种粽子的进价不变求A种粽子最多能购进多少个?23(13分)在矩形ABCD中,AEBD于点E,点P是边AD上一点(1)若BP平分ABD,交AE于点G,PFBD于点F,如图,证明四边形AGFP是菱形;
8、(2)若PEEC,如图,求证:AEABDEAP;(3)在(2)的条件下,若AB1,BC2,求AP的长24(13分)若二次函数yax2+bx+c的图象与x轴、y轴分别交于点A(3,0)、B(0,2),且过点C(2,2)(1)求二次函数表达式;(2)若点P为抛物线上第一象限内的点,且SPBA4,求点P的坐标;(3)在抛物线上(AB下方)是否存在点M,使ABOABM?若存在,求出点M到y轴的距离;若不存在,请说明理由25(14分)如图,四边形ABCD是正方形,EFC是等腰直角三角形,点E在AB上,且CEF90,FGAD,垂足为点C(1)试判断AG与FG是否相等?并给出证明;(2)若点H为CF的中点,
9、GH与DH垂直吗?若垂直,给出证明;若不垂直,说明理由2019年山东省泰安市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得4分,选错、不选或选出的答案超过一个,均记零分)1(4分)在实数|3.14|,3,中,最小的数是()AB3C|3.14|D【分析】根据绝对值的大小进行比较即可,两负数比较大小,绝对值大的反尔小【解答】解:|3|3(3)C、D项为正数,A、B项为负数,正数大于负数,故选:B【点评】此题主要考查利用绝对值来比较实数的大小,此题要掌握性质”两负数比较大小,绝对值大的反尔小,正数大于负数,负
10、数的绝对值为正数“2(4分)下列运算正确的是()Aa6a3a3Ba4a2a8C(2a2)36a6Da2+a2a4【分析】直接利用合并同类项法则以及积的乘方运算法则、同底数幂的乘除运算法则分别计算得出答案【解答】解:A、a6a3a3,故此选项正确;B、a4a2a6,故此选项错误;C、(2a2)38a6,故此选项错误;D、a2+a22a2,故此选项错误;故选:A【点评】此题主要考查了合并同类项以及积的乘方运算、同底数幂的乘除运算,正确掌握相关运算法则是解题关键3(4分)2018年12月8日,我国在西昌卫星发射中心成功发射“嫦娥四号”探测器,“嫦娥四号”进入近地点约200公里、远地点约42万公里的地
11、月转移轨道,将数据42万公里用科学记数法表示为()A4.2109米B4.2108米C42107米D4.2107米【分析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值1时,n是正数;当原数的绝对值1时,n是负数【解答】解:42万公里420000000m用科学记数法表示为:4.2108米,故选:B【点评】此题考查了科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值4(4分)下列图形:是轴对称图形且有两条对称轴的
12、是()ABCD【分析】根据轴对称图形的概念分别确定出对称轴的条数,从而得解【解答】解:是轴对称图形且有两条对称轴,故本选项正确;是轴对称图形且有两条对称轴,故本选项正确;是轴对称图形且有4条对称轴,故本选项错误;不是轴对称图形,故本选项错误故选:A【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合5(4分)如图,直线1112,130,则2+3()A150B180C210D240【分析】过点E作EF11,利用平行线的性质解答即可【解答】解:过点E作EF11,1112,EF11,EF1112,1AEF30,FEC+3180,2+3AEF+FEC+330+180
13、210,故选:C【点评】此题考查平行线的性质,关键是根据平行线的性质解答6(4分)某射击运动员在训练中射击了10次,成绩如图所示:下列结论不正确的是()A众数是8B中位数是8C平均数是8.2D方差是1.2【分析】根据众数、中位数、平均数以及方差的算法进行计算,即可得到不正确的选项【解答】解:由图可得,数据8出现3次,次数最多,所以众数为8,故A选项正确;10次成绩排序后为:6,7,7,8,8,8,9,9,10,10,所以中位数是(8+8)8,故B选项正确;平均数为(6+72+83+92+102)8.2,故C选项正确;方差为(68.2)2+(78.2)2+(78.2)2+(88.2)2+(88.
14、2)2+(88.2)2+(98.2)2+(98.2)2+(108.2)2+(108.2)21.56,故D选项错误;故选:D【点评】本题主要考查了众数、中位数、平均数以及方差,用“先平均,再求差,然后平方,最后再平均”得到的结果表示一组数据偏离平均值的情况,这个结果叫方差7(4分)不等式组的解集是()Ax2Bx2C2x2D2x2【分析】先求出两个不等式的解集,再求其公共解【解答】解:,由得,x2,由得,x2,所以不等式组的解集是2x2故选:D【点评】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解)8
15、(4分)如图,一艘船由A港沿北偏东65方向航行30km至B港,然后再沿北偏西40方向航行至C港,C港在A港北偏东20方向,则A,C两港之间的距离为()kmA30+30B30+10C10+30D30【分析】根据题意得,CAB6520,ACB40+2060,AB30,过B作BEAC于E,解直角三角形即可得到结论【解答】解:根据题意得,CAB6520,ACB40+2060,AB30,过B作BEAC于E,AEBCEB90,在RtABE中,ABE45,AB30,AEBEAB30km,在RtCBE中,ACB60,CEBE10km,ACAE+CE30+10,A,C两港之间的距离为(30+10)km,故选:B
16、【点评】本题考查了解直角三角形的应用,方向角问题,三角形的内角和,是基础知识比较简单9(4分)如图,ABC是O的内接三角形,A119,过点C的圆的切线交BO于点P,则P的度数为()A32B31C29D61【分析】连接OC、CD,由切线的性质得出OCP90,由圆内接四边形的性质得出ODC180A61,由等腰三角形的性质得出OCDODC61,求出DOC58,由直角三角形的性质即可得出结果【解答】解:如图所示:连接OC、CD,PC是O的切线,PCOC,OCP90,A119,ODC180A61,OCOD,OCDODC61,DOC18026158,P90DOC32;故选:A【点评】本题考查了切线的性质、
17、等腰三角形的性质、直角三角形的性质、三角形内角和定理;熟练掌握切线的性质是解题的关键10(4分)一个盒子中装有标号为1,2,3,4,5的五个小球,这些球除标号外都相同,从中随机摸出两个小球,则摸出的小球标号之和大于5的概率为()ABCD【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的小球的标号之和大于5的情况,再利用概率公式即可求得答案【解答】解:画树状图如图所示:共有25种等可能的结果,两次摸出的小球的标号之和大于5的有15种结果,两次摸出的小球的标号之和大于5的概率为;故选:C【点评】本题考查的是用列表法或画树状图法求概率注意列表法或画树状图法可以不重复不遗漏的
18、列出所有可能的结果,用到的知识点为:概率所求情况数与总情况数之比11(4分)如图,将O沿弦AB折叠,恰好经过圆心O,若O的半径为3,则的长为()ABC2D3【分析】连接OA、OB,作OCAB于C,根据翻转变换的性质得到OCOA,根据等腰三角形的性质、三角形内角和定理求出AOB,根据弧长公式计算即可【解答】解:连接OA、OB,作OCAB于C,由题意得,OCOA,OAC30,OAOB,OBAOAC30,AOB120,的长2,故选:C【点评】本题考查的是弧长的计算、直角三角形的性质、翻转变换的性质,掌握弧长公式是解题的关键12(4分)如图,矩形ABCD中,AB4,AD2,E为AB的中点,F为EC上一
19、动点,P为DF中点,连接PB,则PB的最小值是()A2B4CD【分析】根据中位线定理可得出点点P的运动轨迹是线段P1P2,再根据垂线段最短可得当BPP1P2时,PB取得最小值;由矩形的性质以及已知的数据即可知BP1P1P2,故BP的最小值为BP1的长,由勾股定理求解即可【解答】解:如图:当点F与点C重合时,点P在P1处,CP1DP1,当点F与点E重合时,点P在P2处,EP2DP2,P1P2CE且P1P2CE当点F在EC上除点C、E的位置处时,有DPFP由中位线定理可知:P1PCE且P1PCF点P的运动轨迹是线段P1P2,当BPP1P2时,PB取得最小值矩形ABCD中,AB4,AD2,E为AB的
20、中点,CBE、ADE、BCP1为等腰直角三角形,CP12ADECDECP1B45,DEC90DP2P190DP1P245P2P1B90,即BP1P1P2,BP的最小值为BP1的长在等腰直角BCP1中,CP1BC2BP12PB的最小值是2故选:D【点评】本题考查轨迹问题、矩形的性质等知识,解题的关键是学会利用特殊位置解决问题,有难度二、填空题(本大题共6小题,满分24分,只要求填写最后结果,每小题填对得4分)13(4分)已知关于x的一元二次方程x2(2k1)x+k2+30有两个不相等的实数根,则实数k的取值范围是k【分析】根据方程有两个不相等的实数根可得(2k1)24(k2+3)0,求出k的取值
21、范围;【解答】解:原方程有两个不相等的实数根,(2k1)24(k2+3)4k+1120,解得k;故答案为:k【点评】本题考查了一元二次方程ax2+bx+c0(a0)的根与b24ac有如下关系:当0时,方程有两个不相等的两个实数根;当0时,方程有两个相等的两个实数根;当0时,方程无实数根14(4分)九章算术是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等,交易其一,金轻十三两,问金、银一枚各重几何?”意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等,两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计)
22、,问黄金、白银每枚各重多少两?设每枚黄金重x两,每枚白银重y两,根据题意可列方程组为【分析】根据题意可得等量关系:9枚黄金的重量11枚白银的重量;(10枚白银的重量+1枚黄金的重量)(1枚白银的重量+8枚黄金的重量)13两,根据等量关系列出方程组即可【解答】解:设每枚黄金重x两,每枚白银重y两,由题意得:,故答案为:【点评】此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系15(4分)如图,AOB90,B30,以点O为圆心,OA为半径作弧交AB于点A、点C,交OB于点D,若OA3,则阴影都分的面积为【分析】连接OC,作CHOB于H,根据直角三角形的性质求出A
23、B,根据勾股定理求出BD,证明AOC为等边三角形,得到AOC60,COB30,根据扇形面积公式、三角形面积公式计算即可【解答】解:连接OC,作CHOB于H,AOB90,B30,OAB60,AB2OA6,由勾股定理得,OB3,OAOC,OAB60,AOC为等边三角形,AOC60,COB30,COCB,CHOC,阴影都分的面积33+3,故答案为:【点评】本题考查的是扇形面积计算、等边三角形的判定和性质,掌握扇形面积公式、三角形的面积公式是解题的关键16(4分)若二次函数yx2+bx5的对称轴为直线x2,则关于x的方程x2+bx52x13的解为x12,x24【分析】根据对称轴方程求得b,再解一元二次
24、方程得解【解答】解:二次函数yx2+bx5的对称轴为直线x2,得b4,则x2+bx52x13可化为:x24x52x13,解得,x12,x24故意答案为:x12,x24【点评】本题主要考查的是抛物线与x轴的交点,利用抛物线的对称性求得b的值是解题的关键17(4分)在平面直角坐标系中,直线l:yx+1与y轴交于点A1,如图所示,依次作正方形OA1B1C1,正方形C1A2B2C2,正方形C2A3B3C3,正方形C3A4B4C4,点A1,A2,A3,A4,在直线l上,点C1,C2,C3,C4,在x轴正半轴上,则前n个正方形对角线长的和是(2n1)【分析】根据题意和函数图象可以求得点A1,A2,A3,A
25、4的坐标,从而可以得到前n个正方形对角线长的和,本题得以解决【解答】解:由题意可得,点A1的坐标为(0,1),点A2的坐标为(1,2),点A3的坐标为(3,4),点A4的坐标为(7,8),OA11,C1A22,C2A34,C3A48,前n个正方形对角线长的和是:(OA1+C1A2+C2A3+C3A4+Cn1An)(1+2+4+8+2n1),设S1+2+4+8+2n1,则2S2+4+8+2n1+2n,则2SS2n1,S2n1,1+2+4+8+2n12n1,前n个正方形对角线长的和是:(2n1),故答案为:(2n1),【点评】本题考查一次函数图象上点的坐标特征、规律型:点的坐标,解答本题的关键是明
26、确题意,利用数形结合的思想解答18(4分)如图,矩形ABCD中,AB3,BC12,E为AD中点,F为AB上一点,将AEF沿EF折叠后,点A恰好落到CF上的点G处,则折痕EF的长是2【分析】连接EC,利用矩形的性质,求出EG,DE的长度,证明EC平分DCF,再证FEC90,最后证FECEDC,利用相似的性质即可求出EF的长度【解答】解:如图,连接EC,四边形ABCD为矩形,AD90,BCAD12,DCAB3,E为AD中点,AEDEAD6由翻折知,AEFGEF,AEGE6,AEFGEF,EGFEAF90D,GEDE,EC平分DCG,DCEGCE,GEC90GCE,DEC90DCE,GECDEC,F
27、ECFEG+GEC18090,FECD90,又DCEGCE,FECEDC,EC3,FE2,故答案为:2【点评】本题考查了矩形的性质,轴对称的性质,相似三角形的判定与性质等,解题关键是能够作出适当的辅助线,连接CE,构造相似三角形,最终利用相似的性质求出结果三、解答题(本大题共7小题,满分78分,解答应写出必要的文字说明、证明过程或推演步骤)19(8分)先化简,再求值:(a9+)(a1),其中a【分析】先根据分式的混合运算顺序和运算法则化简原式,再将a的值代入计算可得【解答】解:原式(+)(),当a时,原式12【点评】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则及二次
28、根式的运算能力20(8分)为弘扬泰山文化,某校举办了“泰山诗文大赛”活动,从中随机抽取部分学生的比赛成绩,根据成绩(成绩都高于50分),绘制了如下的统计图表(不完整):组别分数人数第1组90x1008第2组80x90a第3组70x8010第4组60x70b第5组50x603请根据以上信息,解答下列问题:(1)求出a,b的值;(2)计算扇形统计图中“第5组”所在扇形圆心角的度数;(3)若该校共有1800名学生,那么成绩高于80分的共有多少人?【分析】(1)抽取学生人数1025%40(人),第2组人数 4050%812(人),第4组人数 4050%1037(人),所以a12,b7;(2)27,所以
29、“第5组”所在扇形圆心角的度数为27;(3)成绩高于80分:180050%900(人),所以成绩高于80分的共有900人【解答】解:(1)抽取学生人数1025%40(人),第2组人数 4050%812(人),第4组人数 4050%1037(人),a12,b7;(2)27,“第5组”所在扇形圆心角的度数为27;(3)成绩高于80分:180050%900(人),成绩高于80分的共有900人【点评】本题考查了统计图,熟练掌握条形统计图与扇形统计图是解题的关键21(11分)已知一次函数ykx+b的图象与反比例函数y的图象交于点A,与x轴交于点B(5,0),若OBAB,且SOAB(1)求反比例函数与一次
30、函数的表达式;(2)若点P为x轴上一点,ABP是等腰三角形,求点P的坐标【分析】(1)先求出OB,进而求出AD,得出点A坐标,最后用待定系数法即可得出结论;(2)分三种情况,当ABPB时,得出PB5,即可得出结论;当ABAP时,利用点P与点B关于AD对称,得出DPBD4,即可得出结论;当PBAP时,先表示出AP2(9a)2+9,BP2(5a)2,进而建立方程求解即可得出结论【解答】解:(1)如图1,过点A作ADx轴于D,B(5,0),OB5,SOAB,5AD,AD3,OBAB,AB5,在RtADB中,BD4,ODOB+BD9,A(9,3),将点A坐标代入反比例函数y中得,m9327,反比例函数
31、的解析式为y,将点A(9,3),B(5,0)代入直线ykx+b中,直线AB的解析式为yx;(2)由(1)知,AB5,ABP是等腰三角形,当ABPB时,PB5,P(0,0)或(10,0),当ABAP时,如图2,由(1)知,BD4,易知,点P与点B关于AD对称,DPBD4,OP5+4+413,P(13,0),当PBAP时,设P(a,0),A(9,3),B(5,0),AP2(9a)2+9,BP2(5a)2,(9a)2+9(5a)2a,P(,0),即:满足条件的点P的坐标为(0,0)或(10,0)或(13,0)或(,0)【点评】此题是反比例函数综合题,主要考查了待定系数法,勾股定理,三角形的面积,等腰
32、三角形的性质,用分类讨论的思想解决问题是解本题的关键22(11分)端午节是我国的传统节日,人们素有吃粽子的习俗某商场在端午节来临之际用3000元购进A、B两种粽子1100个,购买A种粽子与购买B种粽子的费用相同已知A种粽子的单价是B种粽子单价的1.2倍(1)求A、B两种粽子的单价各是多少?(2)若计划用不超过7000元的资金再次购进A、B两种粽子共2600个,已知A、B两种粽子的进价不变求A种粽子最多能购进多少个?【分析】(1)设B种粽子单价为x元/个,则A种粽子单价为1.2x元/个,根据数量总价单价结合用3000元购进A、B两种粽子1100个,即可得出关于x的分式方程,解之经检验后即可得出结
33、论;(2)设购进A种粽子m个,则购进B种粽子(2600m)个,根据总价单价数量结合总价不超过7000元,即可得出关于m的一元一次不等式,解之取其中的最大值即可得出结论【解答】解:(1)设B种粽子单价为x元/个,则A种粽子单价为1.2x元/个,根据题意,得:+1100,解得:x2.5,经检验,x2.5是原方程的解,且符合题意,1.2x3答:A种粽子单价为3元/个,B种粽子单价为2.5元/个(2)设购进A种粽子m个,则购进B种粽子(2600m)个,依题意,得:3m+2.5(2600m)7000,解得:m1000答:A种粽子最多能购进1000个【点评】本题考查了分式方程的应用以及一元一次不等式的应用
34、,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式23(13分)在矩形ABCD中,AEBD于点E,点P是边AD上一点(1)若BP平分ABD,交AE于点G,PFBD于点F,如图,证明四边形AGFP是菱形;(2)若PEEC,如图,求证:AEABDEAP;(3)在(2)的条件下,若AB1,BC2,求AP的长【分析】(1)想办法证明AGPF,AGPF,推出四边形AGFP是平行四边形,再证明PAPF即可解决问题(2)证明AEPDEC,可得,由此即可解决问题(3)利用(2)中结论求出DE,AE即可【解答】(1)证明:如图中,四边形ABCD是矩形,BAD
35、90,AEBD,AED90,BAE+EAD90,EAD+ADE90,BAEADE,AGPBAG+ABG,APDADE+PBD,ABGPBD,AGPAPG,APAG,PAAB,PFBD,BP平分ABD,PAPF,PFAG,AEBD,PFBD,PFAG,四边形AGFP是平行四边形,PAPF,四边形AGFP是菱形(2)证明:如图中,AEBD,PEEC,AEDPEC90,AEPDEC,EAD+ADE90,ADE+CDE90,EAPEDC,AEPDEC,ABCD,AEABDEAP;(3)解:四边形ABCD是矩形,BCAD2,BAD90,BD,AEBD,SABDBDAEABAD,AE,DE,AEABDEA
36、P;AP【点评】本题属于相似形综合题,考查了相似三角形的判定和性质,矩形的性质,解直角三角形等知识,解题的关键是正确寻找相似三角形解决问题,属于中考常考题型24(13分)若二次函数yax2+bx+c的图象与x轴、y轴分别交于点A(3,0)、B(0,2),且过点C(2,2)(1)求二次函数表达式;(2)若点P为抛物线上第一象限内的点,且SPBA4,求点P的坐标;(3)在抛物线上(AB下方)是否存在点M,使ABOABM?若存在,求出点M到y轴的距离;若不存在,请说明理由【分析】(1)用A、B、C三点坐标代入,用待定系数法求二次函数表达式(2)设点P横坐标为t,用t代入二次函数表达式得其纵坐标把t当
37、常数求直线BP解析式,进而求直线BP与x轴交点C坐标(用t表示),即能用t表示AC的长把PBA以x轴为界分成ABC与ACP,即得到SPBAAC(OB+PD)4,用含t的式子代入即得到关于t的方程,解之即求得点P坐标(3)作点O关于直线AB的对称点E,根据轴对称性质即有AB垂直平分OE,连接BE交抛物线于点M,即有BEOB,根据等腰三角形三线合一得ABOABM,即在抛物线上(AB下方)存在点M使ABOABM设AB与OE交于点G,则G为OE中点且OGAB,利用OAB面积即求得OG进而得OE的长易求得OABBOG,求OAB的正弦和余弦值,应用到RtOEF即求得OF、EF的长,即得到点E坐标求直线BE
38、解析式,把BE解析式与抛物线解析式联立,求得x的解一个为点B横坐标,另一个即为点M横坐标,即求出点M到y轴的距离【解答】解:(1)二次函数的图象经过点A(3,0)、B(0,2)、C(2,2) 解得:二次函数表达式为yx2x2(2)如图1,设直线BP交x轴于点C,过点P作PDx轴于点D设P(t,t2t2)(t3)ODt,PDt2t2设直线BP解析式为ykx2把点P代入得:kt2t2t2kt直线BP:y(t)x2当y0时,(t)x20,解得:xC(,0)t3t21,即点C一定在点A左侧AC3SPBASABC+SACPACOB+ACPDAC(OB+PD)44解得:t14,t21(舍去)t2t2点P的
39、坐标为(4,)(3)在抛物线上(AB下方)存在点M,使ABOABM如图2,作点O关于直线AB的对称点E,连接OE交AB于点G,连接BE交抛物线于点M,过点E作EFy轴于点FAB垂直平分OEBEOB,OGGEABOABMA(3,0)、B(0,2),AOB90OA3,OB2,ABsinOAB,cosOABSAOBOAOBABOGOGOE2OGOAB+AOGAOG+BOG90OABBOGRtOEF中,sinBOG,cosBOGEFOE,OFOEE(,)设直线BE解析式为yex2把点E代入得:e2,解得:e直线BE:yx2当x2x2x2,解得:x10(舍去),x2点M横坐标为,即点M到y轴的距离为【点
40、评】本题考查了待定系数法求二次函数、一次函数解析式,一元二次方程的解法,轴对称的性质,等腰三角形性质,三角函数的应用第(3)题点的存在性问题,可先通过画图确定满足ABOABM的点M位置,通过相似三角形对应边成比例或三角函数为等量关系求线段的长25(14分)如图,四边形ABCD是正方形,EFC是等腰直角三角形,点E在AB上,且CEF90,FGAD,垂足为点C(1)试判断AG与FG是否相等?并给出证明;(2)若点H为CF的中点,GH与DH垂直吗?若垂直,给出证明;若不垂直,说明理由【分析】(1)过点F作FMAB交BA的延长线于点M,可证四边形AGFM是矩形,可得AGMF,AMFG,由“AAS”可证EFMCEB,可得BEMF,MEBCAB,可得BEMAMFAGFG;(2)延长GH交CD于点N,由平行线分线段成比例可得,且CHFH,可得GHHN,NCFG,即可求DGDN,由等腰三角形的性质可得DHHG【解答】解:(1)AGFG,理由如下:如图,过点F作FMAB交BA的延长线于点M四边形ABCD是正方形ABBC,B90BAD