《九年级下册数学课件26.1.2 第1课时 反比例函数的图象和性质.ppt》由会员分享,可在线阅读,更多相关《九年级下册数学课件26.1.2 第1课时 反比例函数的图象和性质.ppt(23页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、学习目标,1. 经历画反比例函数的图象、归纳得到反比例函数的 图象特征和性质的过程 (重点、难点) 2. 会画反比例函数图象,了解和掌握反比例函数的图 象和性质. (重点) 3. 能够初步应用反比例函数的图象和性质解题. (重点、 难点),导入新课,情境引入,孙杨 2017游泳世锦赛 200米 自由泳夺冠精彩回放,7 月 30 日,2017 游泳世锦赛在西班牙布达佩斯的多瑙河体育中心落下帷幕. 在 8 天的争夺中,中国代表团不断创造佳绩,以 12 金 12 银 6 铜的成绩排名奖牌榜第二. 孙杨在此次世锦赛中收获了个人世锦赛首枚200 米自由泳金牌. 回顾我们上一课的学习内容,你能写出 200
2、米自由泳比赛中,孙杨游泳所用的时间 t(s) 和游泳速度 v(m/s) 之间的数量关系吗? 试一试,你能在坐标轴中画出这个函数的图象吗?,讲授新课,例1 画反比例函数 与 的图象.,合作探究,提示:画函数的图象步骤一般分为:列表描点连线. 需要注意的是在反比例函数中自变量 x 不能为 0.,解:列表如下:,1,1.2,1.5,2,3,6,6,3,2,1.5,1.2,1,2,2.4,3,4,6,6,4,3,2.4,2,O,2,描点:以表中各组对应值作为点的坐标,在直角坐标系内描绘出相应的点,5,6,x,y,4,3,2,1,1,2,3,4,5,6,3,4,1,5,6,1,2,3,4,5,6,连线:
3、用光滑的曲线顺次连接各点,即可 得 的图象,x 增大,O,2,5,6,x,y,4,3,2,1,1,2,3,4,5,6,3,4,1,5,6,1,2,3,4,5,6,观察这两个函 数图象,回答问题:,思考:,(1) 每个函数图象分 别位于哪些象限? (2) 在每一个象限内, 随着x的增大,y 如何 变化?你能由它们的 解析式说明理由吗?,y 减 小,(3) 对于反比例函数 (k0),考虑问题(1)(2), 你能得出同样的结论吗?,由两条曲线组成,且分别位于第一、三象限 它们与 x 轴、y 轴都不相交; 在每个象限内,y 随 x 的增大而减小.,反比例函数 (k0) 的图象和性质:,归纳:,1. 反
4、比例函数 的图象大致是 ( ),C,y,o,B.,x,o,D.,练一练,例2 反比例函数 的图象上有两点 A(x1,y1),B(x2, y2),且A,B 均在该函数图象的第一象限部分,若 x1 x2,则 y1与y2的大小关系为 ( ),A. y1 y2,B. y1 = y2,C. y1 y2,D. 无法确定,C,观察与思考,当 k =2,4,6时,反比例函数 的图象,有哪些共同特征?,回顾上面我们利用函数图象,从特殊到一般研究反比例函数 (k0) 的性质的过程,你能用类似的方法研究反比例函数 (k0)的图象和性质吗?,反比例函数 (k0) 的图象和性质:,由两条曲线组成,且分别位于第二、四象限
5、 它们与x轴、y轴都不相交; 在每个象限内,y随x的增大而增大.,归纳:,(1) 当 k 0 时,双曲线的两支分别位于第一、三 象限,在每一象限内,y 随 x 的增大而减小;,(2) 当 k 0 时,双曲线的两支分别位于第二、四 象限,在每一象限内,y 随 x 的增大而增大.,一般地,反比例函数 的图象是双曲线,它具有以下性质:,点(2,y1)和(3,y2)在函数 上,则y1 y2 (填“”“”或“=”).,练一练,例3 已知反比例函数 ,y 随 x 的增大而增大,求a的值.,解:由题意得a2+a7=1,且a10 解得 a=3.,练一练,已知反比例函数 在每个象限内,y 随着 x 的增大而减小
6、,求 m 的值,解:由题意得 m210=1,且 3m80 解得 m=3.,当堂练习,1. 反比例函数 的图象在 ( ),A. 第一、二象限 B. 第一、三象限 C. 第二、三象限 D.第二、四象限,B,2. 在同一直角坐标系中,函数 y = 2x 与 的 图象大致是 ( ),A.,B.,C.,D.,B,3. 已知反比例函数 的图象在第一、三象 限内,则m的取值范围是_.,4. 下列关于反比例函数 的图象的三个结论: (1) 经过点 (1,12) 和点 (10,1.2); (2) 在每一个象限内,y 随 x 的增大而减小; (3) 双曲线位于二、四象限. 其中正确的是 (填序号).,(1)(3),m 2,5. 已知反比例函数 的图象过点(2,3),图象上有两点 A (x1,y1),B (x2,y2), 且 x1 x2 0,则 y1y2 0.,6. 已知反比例函数 y = mxm5,它的两个分支分别在 第一、第三象限,求 m 的值.,解:因为反比例函数 y = mxm5 的两个分支分别在第 一、第三象限,,所以有,解得 m=2.,