《2020年九年级数学下册教案27.2.1 第3课时 两边成比例且夹角相等的两个三角形相似.doc》由会员分享,可在线阅读,更多相关《2020年九年级数学下册教案27.2.1 第3课时 两边成比例且夹角相等的两个三角形相似.doc(3页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、27.2.1 相似三角形的判定 第3课时 两边成比例且夹角相等的两个三角形相似1理解“两边成比例且夹角相等的两个三角形相似”的含义,能分清条件和结论,并能用文字、图形和符号语言表示;(重点)2会运用“两边成比例且夹角相等的两个三角形相似”判定两个三角形相似,并解决简单的问题(难点)一、情境导入利用刻度尺和量角器画两个三角形,使它们的两条对应边成比例,并且夹角相等量一量第三条对应边的长,计算它们的比与前两条对应边的比是否相等另两个角是否对应相等?你能得出什么结论?二、合作探究探究点:两边成比例且夹角相等的两个三角形相似【类型一】 直接利用判定定理判定两个三角形相似 已知:如图,在ABC中,C90
2、,点D、E分别是AB、CB延长线上的点,CE9,AD15,连接DE.若BC6,AC8,求证:ABCDBE.解析:首先利用勾股定理可求出AB的长,再由已知条件可求出DB,进而可得到DBAB的值,再计算出EBBC的值,继而可判定ABCDBE.证明:在RtABC中,C90,BC6,AC8,AB10,DBADAB15105,DBAB12.又EBCEBC963,EBBC12,EBBCDBAB,又DBEABC90,ABCDBE.方法总结:解本题时一定要注意必须是两边对应的夹角才行,还要注意一些隐含条件,如公共角、对顶角等【类型二】 添加条件使三角形相似 如图,已知ABC中,D为边AC上一点,P为边AB上一
3、点,AB12,AC8,AD6,当AP的长度为_时,ADP和ABC相似解析:当ADPACB时,解得AP9.当ADPABC时,解得AP4,当AP的长度为4或9时,ADP和ABC相似故答案为4或9.方法总结:添加条件时,先明确已知的条件,再根据判定定理寻找需要的条件,对应本题可先假设两个三角形相似,再利用倒推法以及分类讨论解答【类型三】 利用三角形相似证明等积式 如图,CD是RtABC斜边AB上的高,E为BC的中点,ED的延长线交CA的延长线于F.求证:ACCFBCDF.解析:先证明ADCCDB可得,再结合条件证明FDCFAD,可得,则可证得结论证明:ACB90,CDAB,DACBBDCB90,DA
4、CDCB,且ADCCDB,ADCCDB,.E为BC的中点,CDAB,DECE,EDCDCE,EDCFDAECDACD,FCDFDA,又FF,FDCFAD,ACCFBCDF.方法总结:证明等积式或比例式的方法:把等积式或比例式中的四条线段分别看成两个三角形的对应边,然后证明两个三角形相似,得到要证明的等积式或比例式【类型四】 利用相似三角形的判定进行计算 如图所示,BCCD于点C,BEDE于点E,BE与CD相交于点A,若AC3,BC4,AE2,求CD的长解析:因为AC3,所以只需求出AD即可求出CD.可证明ABC与ADE相似,再利用相似三角形对应边成比例即可求出AD.解:在RtABC中,由勾股定
5、理可得AB5.BCCD,BEDE,CE,又CABEAD,ABCADE,即,解得AD,CDADAC3.方法总结:利用相似三角形的判定进行边角计算时,应先利用条件证明三角形相似或通过作辅助线构造相似三角形,然后利用相似三角形对应角相等和对应边成比例进行求解【类型五】 利用相似三角形的判定解决动点问题 如图,在ABC中,C90,BC8cm,5AC3AB0,点P从B出发,沿BC方向以2cm/s的速度移动,与此同时点Q从C出发,沿CA方向以1cm/s的速度移动,经过多长时间ABC和PQC相似?解析:由AC与AB的关系,设出AC3xcm,AB5xcm,在直角三角形ABC中,利用勾股定理列出关于x的方程,求
6、出方程的解得到x的值,进而得到AB与AC的长然后设出动点运动的时间为ts,根据相应的速度分别表示出PC与CQ的长,由ABC和PQC相似,根据对应顶点不同分两种情况列出比例式,把各边的长代入即可得到关于t的方程,求出方程的解即可得到t的值,从而得到所有满足题意的时间t的值解:由5AC3AB0,得到5AC3AB,设AB为5xcm,则AC3xcm,在RtABC中,由BC8cm,根据勾股定理得25x29x264,解得x2或x2(舍去),AB5x10cm,AC3x6cm.设经过t秒ABC和PQC相似,则有BP2tcm,PC(82t)cm,CQtcm,分两种情况:当ABCPQC时,有,即,解得t;当ABCQPC时,有,即,解得t.综上可知,经过或秒ABC和PQC相似方法总结:本题的关键是根据三角形相似的对应顶点不同,分两种情况ABCPQC与ABCQPC分别列出比例式来解决问题三、板书设计1三角形相似的判定定理:两边成比例且夹角相等的两个三角形相似;2应用判定定理解决简单的问题 本节课采用探究发现式教学法和参与式教学法为主,利用多煤体引导学生始终参与到学习活动的全过程中,处于主动学习的状态采用动手实践,自主探索与合作交流的学习方法,使学生积极参与教学过程在教学过程中展开思维,培养学生提出问题、分析问题、解决问题的能力,进一步理解观察、类比、分析等数学思想.