九年级下册数学课件第二十六章小结与复习.ppt

上传人:荣*** 文档编号:3396938 上传时间:2020-08-23 格式:PPT 页数:27 大小:677KB
返回 下载 相关 举报
九年级下册数学课件第二十六章小结与复习.ppt_第1页
第1页 / 共27页
九年级下册数学课件第二十六章小结与复习.ppt_第2页
第2页 / 共27页
点击查看更多>>
资源描述

《九年级下册数学课件第二十六章小结与复习.ppt》由会员分享,可在线阅读,更多相关《九年级下册数学课件第二十六章小结与复习.ppt(27页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、1. 反比例函数的概念,要点梳理,定义:形如_ (k为常数,k0) 的函数称为反 比例函数,其中x是自变量,y是x的函数,k是比例 系数 三种表达式方法: 或 xykx 或ykx1 (k0) 防错提醒:(1)k0;(2)自变量x0;(3)函数y0.,2. 反比例函数的图象和性质,(1) 反比例函数的图象:反比例函数 (k0)的 图象是 ,它既是轴对称图形又是中心 对称图形. 反比例函数的两条对称轴为直线 和 ; 对称中心是: .,双曲线,原点,y = x,y=x,(2) 反比例函数的性质,(3) 反比例函数比例系数 k 的几何意义,k 的几何意义:反比例函数图象上的点 (x,y) 具有 两坐标

2、之积 (xyk) 为常数这一特点,即过双曲线 上任意一点,向两坐标轴作垂线,两条垂线与坐 标轴所围成的矩形的面积为常数 |k|. 规律:过双曲线上任意一点,向两坐标轴作垂线, 一条垂线与坐标轴、原点所围成的三角形的面积 为常数 ,3. 反比例函数的应用,利用待定系数法确定反比例函数:, 根据两变量之间的反比例关系,设 ; 代入图象上一个点的坐标,即 x、y 的一对 对应值,求出 k 的值; 写出解析式.,反比例函数与一次函数的图象的交点的求法,求直线 yk1xb (k10) 和双曲线 (k20)的交点坐标就是解这两个函数解析式组成的方 程组.,利用反比例函数相关知识解决实际问题,过程:分析实际

3、情境建立函数模型明确 数学问题 注意:实际问题中的两个变量往往都只能取 非负值.,考点讲练,1. 下列函数中哪些是正比例函数?哪些是反比例函数?, y = 3x1, y = 2x2, y = 3x,2. 已知点 P(1,3) 在反比例函数 的图象上, 则 k 的值是 ( ) A. 3B. 3 C. D.,B,3. 若 是反比例函数,则 a 的值为 ( ) A. 1 B. 1 C. 1 D. 任意实数,A,例1 已知点 A(1,y1),B(2,y2),C(3,y3) 都在反比 例函数 的图象上,则y1,y2,y3的大小关系是 ( ) A. y3y1y2 B. y1y2y3 C. y2y1y3 D

4、. y3y2y1,解析:方法分别把各点代入反比例函数求出y1,y2, y3的值,再比较出其大小即可 方法:根据反比例函数的图象和性质比较,D,方法总结:比较反比例函数值的大小,在同一个象限内根据反比例函数的性质比较,在不同象限内,不能按其性质比较,函数值的大小只能根据特征确定,y1 0y2,已知点 A (x1,y1),B (x2,y2) (x10 x2)都在反比例函数 (k0) 的图象上,则 y1 与 y2 的大小关系 (从大到小) 为 .,例2 如图,两个反比例函数 和 在第一象 限内的图象分别是 C1 和 C2,设点 P 在 C1 上,PA x 轴于点A,交C2于点B,则POB的面积为 .

5、,1,1. 如图,在平面直角坐标系中,点 M 为 x 轴正半轴 上 一点,过点 M 的直线 l y 轴,且直线 l 分别与反比 例函数 (x0)和 (x0) 的图象交于P,Q 两点,若 SPOQ=14, 则 k 的值为 .,20,4,10,2. 如图,已知点 A,B 在双曲线 上,ACx 轴于 点C,BDy 轴于点 D,AC 与 BD 交于点 P,P 是 AC 的中点,若ABP 的面积为6,则 k = .,24,E,F,SABP= S四边形BFCP, = (S四边形BDOFS四边形OCPD) = (S四边形BDOF S四边形AEOC) = (k k)= k = 6. k =24.,例3 如图,

6、已知 A (4, ),B (1,2) 是一次函数 y =kx+b 与反比例函数 (m0)图象的两个交点,ACx 轴于点 C,BDy 轴于点 D (1) 根据图象直接回答:在第二象限内,当 x 取何值 时,一次函数的值大于反比例函数的值;,解:当4 x 1时,一 次函数的值大于反比例 函数的值.,(2) 求一次函数解析式及 m 的值;,解:把A(4, ),B(1,2)代入 y = kx + b中,得,4k + b = ,,k + b =2,,所以一次函数的解析式为 y = x + .,把 B (1,2)代入 中,得 m =12=2.,(3) P 是线段 AB 上的一点,连接 PC,PD,若PCA

7、 和 PDB 面积相等,求点 P 坐标.,P, PCA面积和PDB面积相等, ACt(4)= BD2 2( t+ ),,解得:t = . 点 P 的坐标为 ( , ),解:设点 P 的坐标为 ( t, t + ),P点到直线 AC 的 距离为 t(4),P 点到直线 BD 的距离为2 ( t+ ),方法总结:此类一次函数,反比例函数,二元一次方程组,三角形面积等知识的综合运用,其关键是理清解题思路. 在直角坐标系中,求三角形或四边形面积时,是要选取合适的底边和高,正确利用坐标算出线段长度.,如图,设反比例函数的解析式为 (k0) (1) 若该反比例函数与正比例函数 y =2x 的图象有一个 交

8、点 P 的纵坐标为 2,求 k 的值;,解:由题意知点 P 在正比例函数 y =2x 上, 把 P 的纵坐标 2 带入该解析 式,得P (1,2), 把 P (1,2) 代入 , 得到,P,2,(2) 若该反比例函数与过点 M (2,0) 的直线 l:y=kx +b 的图象交于 A,B 两点,如图所示,当 ABO 的面积为 时,求直线 l 的解析式;,解:把 M (2,0) 代入 y = kx + b, 得 b= 2k,y = kx+2k,,解得 x =3 或 1.,ykx+2k,, B (3,k),A (1,3k)., ABO的面积为, 23k + 2k =,解得, 直线 l 的解析式为 y

9、 = x + ,(3) 在第(2)题的条件下,当 x 取何值时,一次函数的 值小于反比例函数的值?,解:当 x 3或 0 x1 时,一次函数的值小于反 比例函数的值.,例4 病人按规定的剂量服用某种药物,测得服药后 2 小时,每毫升血液中的含药量达到最大值为 4 毫克. 已知服药后,2 小时前每毫升血液中的含药量 y (单位:毫克)与时间 x (单位:小时) 成正比例;2 小时后 y 与 x 成反比例 (如图). 根据以上信息解答下列问题: (1) 求当 0 x 2 时,y 与 x 的函数解析式;,解:当 0 x 2 时,y 与 x 成正比 例函数关系 设 y kx,由于点 (2,4) 在 线

10、段上, 所以 42k,k2,即 y2x.,(2) 求当 x 2 时,y 与 x 的函数解析式;,解:当 x 2时,y 与 x 成反比例函数关系, 设,解得 k 8.,由于点 (2,4) 在反比例函数的图象上, 所以,即,(3) 若每毫升血液中的含药量不低于 2 毫克时治疗有 效,则服药一次,治疗疾病的有效时间是多长?,解:当 0 x2 时,含药量不低于 2 毫克,即 2x2, 解得x1,1x2; 当 x2 时,含药量不低于 2 毫克,,即 2,解得 x 4. 2 x 4.,所以服药一次,治疗疾病的有 效时间是 123 (小时),如图所示,制作某种食品的同时需将原材料加热,设该材料温度为y,从加

11、热开始计算的时间为x分钟据了解,该材料在加热过程中温度y与时间x成一次函数关系已知该材料在加热前的温度为4,加热一段时间使材料温度达到 28时停止加热,停止加热 后,材料温度逐渐下降,这 时温度y与时间 x 成反比例 函数关系,已知第 12 分钟 时,材料温度是14,(1) 分别求出该材料加热和停止加热过程中 y 与 x 的函 数关系式(写出x的取值范围);,答案:,(2) 根据该食品制作要求,在材料温度不低于 12 的 这段时间内,需要对该材料进行特殊处理,那么 对该材料进行特殊处理的时间为多少分钟?,解:当y =12时,y =4x+4,解得 x=2 由 ,解得x =14. 所以对该材料进行特殊 处理所用的时间为 142=12 (分钟),

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 初中资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁