《最新SPSS数据分析—混合线性模型.doc》由会员分享,可在线阅读,更多相关《最新SPSS数据分析—混合线性模型.doc(4页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、精品资料SPSS数据分析混合线性模型.SPSS数据分析混合线性模型之前介绍过的基于线性模型的方差分析,虽然扩展了方差分析的领域,但是并没有突破方差分析三个原有的假设条件,即正态性、方差齐性和独立性,这其中独立性要求较严格,我们知道方差分析的基本思想其实就是细分,将所有对因变量产生影响的因素逐一摘出,但是如果各观测值之间相互影响,这样在细分影响因素的时候,是很难分出到底是自变量的影响还是观测值之间自己的影响。虽然随机抽样会最大程度的使数据满足独立性,但是有时候这种方法并不奏效,比如随机抽取受访者分析其消费特征,这里就假定所有受访者的之间是相互独立的,然而仔细想想,这其中存在问题,如果某些受访者来
2、自同一个城市或地区,从个体角度讲,他们确实是独立的人,之间没有任何联系,但是如果从分析目的角度讲,于区域因素他们之间的消费特征是趋于相似的,而产生这种相似性,正是于相互作用导致,这些人是存在相互影响关系的,也就类以于相关样本,与此同时,这种相互作用也使得不同城市间的消费特征产生差异,我们称这种数据为具有层次聚集性的数据。数据的聚集性除了表现在聚集因素间指标的均值水平不同外,还表现在不同城市间的指标离散度上。 从层次聚集性数据也可以看出,随机抽样只能保证数据被抽到的概率相同,但是对于抽到的是什么样的数据,却无法控制了。对于这种具有层次结构的数据,如果分析目的仅限于这几种层次,比如就分析这几个城市
3、,那么可以把它当做一种固定因子,只分析固定效应而不用考虑这种聚集性,但是如果想把结果推广到所有城市,那就不能忽略这种特征,否则会降低结果的准确性,因此还要加入随机效应。 混合线性模型就是同时包含固定效应和随机效应的线性模型,是解决此类层次聚集性数据的方法之一,对于具有层次结构的数据,我们需要将使观测值之间产生相互影响的层次因素也摘出来,比如上述中的城市因素,传统的方差分析模型中,将所有无法解释的因素都归在随机误差中,而随着我们对传统方差模型的不断拓展,对随机误差的分解也越来越精细,结果也越来越准确。 【例】我们想分析哪些因素会对16岁时毕业成绩的影响,显然毕业成绩和学校有关,好学校的学生成绩会好一些,而差学校的学生成绩会差一些,那么学校这个因素就是上述的层次因素,它使得因变量产生相关性,而且我们是想把结果推广到所有学校,因此学校这个变量应该被定为随机变量,我们首先按照一般线性模型来分析,不考虑层次因素 分析一般线性模型单变量