《《提公因式法》 教学设计-5页精选文档.doc》由会员分享,可在线阅读,更多相关《《提公因式法》 教学设计-5页精选文档.doc(5页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、如有侵权,请联系网站删除,仅供学习与交流提公因式法 教学设计【精品文档】第 5 页提公因式法一、内容与分析教材所处的地位这节课是九年制义务教育教科书八年级上册第一章第二节提公因式法第一课时。学习分解因式一是为解高次方程作准备,二是学习对于代数式变形的能力,从中体会分解的思想、逆向思考的作用。它不仅是现阶段学生学习的重点内容,而且也是学生后续学习的重要基础。本章教材是在学生学习了整式运算的基础上提出来的,事实上,它是整式乘法的逆向运用,与整式乘法运算有密切的联系分解因式的变形不仅体现了一种“化归”的思想,而且也是解决后续分式化简、解方程、恒等变形等学习的基础,为数学交流提供了有效的途径分解因式这
2、一章在整个教材中起到了承上启下的作用。二、目标与分析目标:(1)使学生经历探索寻找多项式各项的公因式的过程,能确定多项式各项的公因式; (2)会用提取公因式法进行因式分解分析:根据学生在上一节课的经验,学生只是对因式分解有了一个初步的印象和判断,而对于怎样把一个多项式进行因式分解还很茫然,相应的数学能力还有待于进一步加强和巩固。因此,本课由学生自主探索解题途径,在此过程中,通过观察、对比等手段,确定多项式各项的公因式,加强学生的直觉思维,渗透化归的思想方法,培养学生的观察能力;引导学生由乘法分配律的逆运算过渡到因数分解,再由单项式与多项式的乘法运算过渡到因式分解,进一步发展学生的类比思想;寻找
3、出确定多项式各项的公因式的一般方法,培养学生的初步归纳能力。三、本课内容及重点、难点分析: 根据标准的要求,本章教材介绍了最基本的分解因式的方法:提公因式法和应用公式法每一节课的引入,立足渗透类比这种重要的思想方法通过如类比因数分解的意义导入因式分解的意义等另外本章的设计多以问题串的形式创设问题情境,如观察多项式x2- 25和9x2- y2,它们有什么共同特征?能否将它们分别写成两个因式的乘积?与同伴交流你的想法等,让学生经历观察、发现、类比、归纳、总结、反思的过程,感受整式乘法与因式分解之间的互逆变形关系,发展学生有条理的思考及语言表达能力3、教学重点、难点根据八年级学生的认知规律和知识基础
4、,结合本节课的内容以及新课程标准确定本节课的重点为:(1)学生能确定多项式中各项的公因式;(2)学生能用提公因式法把多项式分解因式。难点为:正确找出多项式中各项的公因式及提公因式后另一个因式的确定。四 、教学方法分析根据本节课内容,遵循学生认知规律和心理特点,为了突出重点,突破难点,培养学生的创新能力,我采用演示、讨论、观察、比较、概括等多种方法交叉教学,利用多媒体辅助教学,呈现知识的形成过程,充分调动多种感官参与教学,激发学生学习的兴趣,使数学教学成为学生“探索、发现、再发现、创造”的过程。五、学法分析教学的矛盾主要是解决学生的学,“学”是中心,“会”是目的。因此,在教学过程中,我通过创设问
5、题的情境,以激发学生“乐学”;启发诱导,以指导学生“会学”;变式训练,以引导学生“活学”;引导学生反思自己的分析过程,以指导学生“善学”。使学生通过观察、比较、分析、概括等一系列思维训练,不断提高学习数学的探究意识和创新能力。六、教学过程分析第一环节 引入问题1:计算:(1)3733763337设计意图:引入这一步的目的旨在让学生通过乘法分配律的逆运算(因数分解)这一特殊算法,使学生通过类比的思想方法很自然地过渡到正确理解提公因式法的概念上,从而为提公因式法的掌握扫清障碍师生活动:学生对于利用乘法的分配律进行逆运算的方法很熟悉,能很快找到这个式子各项有的相同因数337,在提出公因数337后,很
6、快得出这一题的计算结果是33700。第二环节 想一想问题2:多项式 ab+ac中,各项有相同的因式吗?多项式 x2+4x呢?多项式mb2+nbb呢?结论:多项式中各项都含有的相同因式,叫做这个多项式各项的公因式设计意图:在学生能顺利地寻找数的简便运算中的公因数之后,再深一步引导学生采用类比的方法由寻找相同的因数过渡到在多项式中寻找相同的因式师生活动:教师提出问题后主要由学生总结,由于有了第一环节的铺垫,再从数过渡到式,学生能很快用类比的方法找到这些式子中相同的因式,知道公因式的概念。第三环节 议一议问题3:多项式8x3y2x2y2各项的公因式是什么?结论:(1)各项系数是整数,系数的最大公约数
7、是公因式的系数; (2)各项都含有的字母的最低次幂的积是公因式的字母部分; (3)公因式的系数与公因式字母部分的积是这个多项式的公因式。设计意图:由于第二环节提供的几个多项式比较简单,不能反映公因式的全部特征,而通过本环节中寻找多项式2x2y+6x3y2中各项的公因式,引导他们归纳出确定多项式各项公因式的方法,培养学生的初步归纳能力,顺利的归纳出确定多项式各项公因式的方法,培养学生的初步归纳能力。师生活动:学生知道每一个多项式都由两部分组成:系数部分与字母部分,因此,有必要将系数部分与字母部分分开讨论。在教师的引导下,学生能分别找出公因式的系数部分与字母部分,最后找到这个多项式的公因式。第四环
8、节 试一试问题4:将以下多项式写成几个因式的乘积的形式:(1)ab+ac (2)x2+4x (3)mb2+nbb结论:如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法设计意图:让学生尝试着使用因式分解的意义以及提公因式法的定义进行几个简单的多项式的分解,为过渡到较为复杂的多项式的分解提供必要的准备师生活动:由于有了因数分解的基础以及对提公因式法的正确理解和运用,学生能较快地从数的分解过渡到字母的因式分解。学生在刚开始可能还是不能够按照正确的步骤去找到一个多项式的公因式,教师应鼓励学生多说明公因式是怎样找到的。第五
9、环节 例题讲解例1:把27m2n218m2n36mn分解因式。分析:首先要确定各项的公因式。不难看出这个公因式是一个单项式,因此要从系数与字母两部分来考虑:(1)公因式的系数取各项系数的最大公约数;(2)公因式中的字母取各项相同的字母,并且各字母的指数取次数最低的。所以各项的公因式是9mn,其中(1)9是27与18和36的最大公约数。(2)m是各项相同的字母,其指数最低是1,即为m;n也是各项相同的字母,其指数最低是1,即为n。解:24x2y12xy228y2例2:把3x-6xy+x分解因式。 解:3x-6xy+x= x3x-x6y+x1=x(3x-6y+1)注意:不要漏项。这里把写成x1,可
10、知提出一个因式x后,另一个因式是1。因为分解因式与整式乘法相反,所以可以用整式乘法检查因式分解的结果对不对。例3:把24x2y12xy228y2分解因式。注意:如果多项式的第一项的系数是负的,一般要提出“-”号,使括号内的第一项的系数是正的。在提出“-”号时,多项式的各项都要变号。第六环节 做一做问题5:将下列多项式进行分解因式:(1)3x+6 (2)7x221x (3)8a3b212ab3c+ab (4)24x312x2+28x设计意图:根据用提公因式法进行因式分解时出现的问题,在教师的启发与指导下,学生自己归纳出提公因式的步骤及怎样预防提取公因式时出现类似问题,为提取公因式积累经验师生活动
11、:学生归纳:提取公因式的步骤: (1)找公因式; (2)提公因式易出现的问题:(1)第(3)题中的最后一项提出ab后,漏掉了“+1”; (2)第(4)题提出“”时,后面的因式不是每一项都变号矫正对策:(1)因式分解后括号内的多项式的项数与原多项式的项数是否相同;(2)如果多项式的第一项带“”,则先提取“”号,然后提取其它公因式;(3)将分解因式后的式子再进行单项式与多项式相乘,其积是否与原式相等第七环节 反馈练习 1、找出下列各多项式的公因式:(1)4x+8y (2)am+an (3)48mn24m2n3 (4)a2b2ab2+ab 2、将下列多项式进行分解因式: (1)8x72 (2)a2b
12、5ab (3)4m38m2(4)a2b2ab2+ab(5)48mn24m2n3 (6)2x2y+4xy22xy设计意图:通过学生的反馈练习,使教师能全面了解学生对公因式概念的理解是否到位,提取公因式的方法与步骤是否掌握,以便教师能及时地进行查缺补漏。从学生的反馈情况来看,学生对公因式概念的理解基本到位,提取公因式的方法与步骤基本掌握,但依然有部分同学出现第五环节中的问题,如对首项出现负号时不能正确处理,此时,需要老师进一步引导师生活动:从学生掌握的情况出发,看看学生的问题是在寻找公因式方面还是在提公因式方面没有很好的掌握,教师再加以强调公因式的找法和提公因式应该注意的事项。第八环节 课堂小结从今天的课程中,你学到了哪些知识?你认为提公因式法与单项式乘多项式有什么关系?