matlab总练习题(完整版)共13页.doc

上传人:1595****071 文档编号:33827411 上传时间:2022-08-12 格式:DOC 页数:13 大小:291KB
返回 下载 相关 举报
matlab总练习题(完整版)共13页.doc_第1页
第1页 / 共13页
matlab总练习题(完整版)共13页.doc_第2页
第2页 / 共13页
点击查看更多>>
资源描述

《matlab总练习题(完整版)共13页.doc》由会员分享,可在线阅读,更多相关《matlab总练习题(完整版)共13页.doc(13页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、如有侵权,请联系网站删除,仅供学习与交流matlab总练习题(完整版)【精品文档】第 13 页 vpa(pi,20)ans =3.1415926535897932385 vpa(exp(1),20)ans =2.7182818284590452354 x=linspace(-pi,pi,21); y=sin(x)y = Columns 1 through 6 -0.0000 -0.3090 -0.5878 -0.8090 -0.9511 -1.0000 Columns 7 through 12 -0.9511 -0.8090 -0.5878 -0.3090 0 0.3090 Columns 1

2、3 through 18 0.5878 0.8090 0.9511 1.0000 0.9511 0.8090 Columns 19 through 210.5878 0.3090 0.0000 k=1:1000; kk=1./k; kkk=kk./k; res=sum(kkk)-(pi2)/6res =-9.9950e-04%承接上题 sum(kk)-log(1000)ans =0.5777 power(1+eps,1/eps)ans =2.7183 a=rand(2,3)a = 0.8147 0.1270 0.63240.9058 0.9134 0.0975 x=a(1,:)x =0.814

3、7 0.1270 0.6324 y=a(2,:)y =0.9058 0.9134 0.0975 norm(x)ans = 1.0391 norm(y)ans =1.2900 acos(dot(x,y)/norm(x)/norm(y)ans = 0.8189 rand(3,3)ans = 0.2785 0.9649 0.9572 0.5469 0.1576 0.4854 0.9575 0.9706 0.8003 det(ans)ans =0.2937线性无关a = 0.3922 0.7060 0.6555 0.0318 0.1712 0.2769 x=a(1,:)x = 0.3922 0.706

4、0 y=a(2,:)y = 0.6555 0.0318 z=a(3,:)z = 0.1712 0.2769 alpha=x-zalpha = 0.2210 0.4291 beta=y-zbeta =0.4843 -0.2451 alpha=alpha 0alpha = 0.2210 0.4291 0 beta=beta 0beta = 0.4843 -0.2451 0 cross(alpha,beta)ans = 0 0 -0.2620面积0.2620 a=11:19; b=a; for k=1:8b=b;a+10*k;end rank(b)ans = 2 a=vander(1:9); b=f

5、liplr(a)b = Columns 1 through 5 1 1 1 1 1 1 2 4 8 16 1 3 9 27 81 1 4 16 64 256 1 5 25 125 625 1 6 36 216 1296 1 7 49 343 2401 1 8 64 512 4096 1 9 81 729 6561 Columns 6 through 9 1 1 1 1 32 64 128 256 243 729 2187 6561 1024 4096 16384 65536 3125 15625 78125 390625 7776 46656 279936 1679616 16807 1176

6、49 823543 5764801 32768 262144 2097152 16777216 59049 531441 4782969 43046721 det(b)ans = 5.0566e+15方式一 f=(x,y) exp(x+y)+sin(x2)+(y2)f = (x,y)exp(x+y)+sin(x2)+(y2) f(1,2)ans = 19.1266方式二function f=myfunfun(x,y)f=exp(x+y)+sin(x2)+(y2); myfunfun(1,2)ans = 19.1266Char 1.41421356237309504880168872420969

7、80785696718753769480731766797379907324784621070388503875343276415727 a=ans; sqrt2char(3-2)=a(3)sqrt2char =4142135623730950488016887242096980785696718753769480731766797379907324784621070388503875343276415727 for x=1:100b(x)=str2num(sqrt2char(x)end sum(b)/100ans = 4.8100f=(x) (x3)*sin(x)+(x2)/3+x*cos(

8、x)f = (x)(x3)*sin(x)+(x2)/3+x*cos(x) ezplot(f,-2,1) x0=fzero(f,-1)x0 = -0.7889另一根为0,是显然的function y=difun(x)if x-pi & x y=y = for x=-6:0.05:6y=y difun(x);end plot(x,y) plot(-6:0.05:6,y) pi/4ans = 0.7854 %pi/4的理想值矩形公式:function y=rectangle(n)x=0:1/n:1;a=1./(1+x.*x);y=sum(a)*(1/n);end rectangle(1000)ans

9、 = 0.7861 rectangle(10000)ans = 0.7855 rectangle(100000)ans =0.7854梯形公式:function y=trapezoid(n)x=0:1/n:1;a=1./(1+x.*x);begin=a(1);endd=a(n+1);a(1)=0;a(n)=0;y=sum(a)*(1/n)+begin*(1/n)*0.5+endd*(1/n)*0.5;endtrapezoid(1000)ans = 0.7854 trapezoid(100)ans = 0.7853Simpson 公式function y=simpson(n)x=0:1/n:1;

10、a=thefun(x);begin=a(1);endd=a(n+1);medium=;for x=1:n medium=medium (a(x)+a(x+1)*0.5;enda(1)=0;a(n)=0;y=begin*(1/n)*(1/6)+endd*(1/n)*(1/6)+sum(a)*(1/n)*(1/3)+sum(medium)*(1/n)*(1/6)*4;endfunction e=thefun(r)e=1./(1+r.*r);end simpson(100)ans = 0.7854 simpson(10)ans =0.7832 A=6 2 1 -1;2 4 1 0;1 1 4 -1;

11、-1 0 -1 3; b=6 1 5 -5; x=Abx = 0.7906 -0.3613 0.8639 -1.1152 diag(1:4) eye(4)ans = 1 0 0 0 1 0 0 0 0 2 0 0 0 1 0 0 0 0 3 0 0 0 1 0 0 0 0 4 0 0 0 1function yh=yhsj(n)yh=1; disp(1);for k=2:n yh=yh,0+0,yh; disp(yh)end end% n=11运行 x=sym(x); f=sqrt(1+(4/9)*x(1/2)2)f =(16*x)/81 + 1)(1/2) a=sym(a); b=sym(b

12、); int(f,a,b)ans =(16*b + 81)(3/2)/216 - (16*a + 81)(3/2)/216 t=sym(t); a=sym(a); x=a*(t-sin(t)x =a*(t - sin(t) y=a*(1-cos(t)y =-a*(cos(t) - 1) dx=diff(x)dx =-a*(cos(t) - 1) dy=diff(y)dy =a*sin(t) int(sqrt(dx2+dy2),0,2*pi)ans =8*(a2)(1/2) p=polyfit(-pi -pi/2 0 pi/2 pi,0 -1 0 1 0,5)p = Columns 1 thro

13、ugh 5 -0.0349 0.0000 0.3440 -0.0000 0 Column 6 -0.0000 plot(-pi:pi/100:pi,polyval(p,-pi:pi/100:pi); hold on plot(-pi:pi/100:pi,sin(-pi:pi/100:pi);function a=num2p(n)strr=num2str(n);index=size(strr);indexx=index(2);a=;for k=indexx-1:-1:0 a=a rem(fix(n/(10k),10);endend num2p(95489298494)ans = Columns

14、1 through 8 9 5 4 8 9 2 9 8 Columns 9 through 11 4 9 4function ppi=ttry(n)pointx=-1+2*rand(1,n);pointy=-1+2*rand(1,n);index=pointx.*pointx+pointy.*pointy;indexx=index ttry(100)ans = 3.1200 ttry(10000)ans = 3.1376function y=collatz(n)if n=1 y=1 return;else if rem(n,2)=0 n=n/2; else n=3*n+1; end n y=c

15、ollatz(n);end collatz(12)n = 6n = 3n = 10n = 5n = 16n = 8n = 4n = 2n = 1y = 1 f=(x) 1./(1+x.2)f = (x)1./(1+x.2) y=f(x); x=0:0.1:1; y=f(x); p=polyfit(x,y,5)p = Columns 1 through 5 -0.2372 0.3529 0.5071 -1.1343 0.0115 Column 6 0.9999 intp=polyint(p)intp = Columns 1 through 5 -0.0395 0.0706 0.1268 -0.3

16、781 0.0058 Columns 6 through 7 0.9999 0 res1=polyval(intp,1)-polyval(intp,0)res1 = 0.7854 %这是插值拟合解 atan(1)ans =0.7854 %actan(1)公式解fid=fopen(C:陈民权的文档2matlab作业pi_1m.txt,r)fid = 3 b=fscanf(fid,%s); fclose(fid)ans = 0 b(1:55)=;编辑“givemerun.m”文件:y=1;n=zeros(1,10)flag=0;for x=1:1500000 if y=1000001 breake

17、lseif b(x)= & flag=0 & isempty(str2num(b(x)=1 c=b(x); d=str2double(c); n(d+1)=n(d+1)+1; y=y+1;elseif b(x)= flag=1;elseif b(x)= flag=0;endendendn givemerun %运行“givemerun”n = 0 0 0 0 0 0 0 0 0 0n = n = Columns 1 through 3 99959 99758 100026 Columns 4 through 6 100229 100230 100359 Columns 7 through 9

18、99548 99800 99985 Column 10 100106 %分别为0,1,2,8,9在前一百万位出现的次 sum(n)ans = 1000000 cc=num2str(n)cc =99959 99758 100026 100229 100230 100359 99548 99800 99985 100106 fopen(res.txt,w)ans = 6 fprintf(6,cc)ans =78function f=veryfun(n)if n=6174 returnelseindex(1)=(n-rem(n,1000)/1000;index(2)=fix(n/100)-index

19、(1)*10;index(3)=rem(fix(n/10),10);index(4)=rem(n,10);index2=sort(index,ascend);index3=sort(index,descend);a=1000 100 10 1;max=index3*(a);min=index2*(a);max-minveryfun(max-min);endend veryfun(9864)ans = 5175ans = 5994ans = 5355ans = 1998ans = 8082ans = 8532ans = 6174function m=tem(index,t)m=index(1).

20、*exp(index(2).*t)end index,r,j,c,m,e=nlinfit(t,m,tem,0 0)index = 78.7137 -0.1047%在这里省略中间的迭代过程和表格变量输入过程 m=tem(index,0:0.1:25); plot(0:0.1:25,m)function son=sonfind(A)index=sum(A)/2;for k=1:5 b=nchoosek(1:10,k); sizee=size(b); kk=sizee(1); for x=1:kk c=b(x,:); A_son=; for y=c A_son=A_son A(y); end if

21、sum(A_son)=index son=A_son; break return end end endend%集合元素有互异性,但不影响验证! sonfind(11:20) sonfind(10 5 5 10 60 10 10 10 10 10)ans = 5 5 60 sonfind(10 10 10 10 90 10 10 10 10 10)ans =90%进一步验证(这里元素互异) sonfind(21 22 23 24 25 11 12 13 14 65)ans = 21 22 23 24 25 sort(21 22 23 24 25 11 12 13 14 65)ans = 11 12 13 14 21 22 23 24 25 65 sonfind(ans)ans =11 12 13 14 652016 12

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 小学资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁