《2022年反比例函数一次函数二次函数性质及图像 .pdf》由会员分享,可在线阅读,更多相关《2022年反比例函数一次函数二次函数性质及图像 .pdf(12页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、精品资料欢迎下载反比例函数1、反比例函数图象:反比例函数的图像属于以原点为对称中心的中心对称的双曲线反比例函数图像中每一象限的每一支曲线会无限接近X 轴 Y 轴但不会与坐标轴相交 (K0) 。2、性质:1.当 k0 时,图象分别位于第一、三象限,同一个象限内,y 随 x 的增大而减小;当k0 时,函数在 x0 上同为减函数; k0 时,函数在 x0 上同为增函数。定义域为 x0;值域为 y0。3.因为在 y=k/x(k0)中,x 不能为 0,y 也不能为 0,所以反比例函数的图象不可能与x 轴相交,也不可能与 y 轴相交。4. 在一个反比例函数图象上任取两点P,Q,过点 P,Q 分别作 x 轴
2、,y 轴的平行线,与坐标轴围成的矩形面积为 S1,S2则 S1S2=|K| 5. 反比例函数的图象既是轴对称图形,又是中心对称图形,它有两条对称轴y=x y=-x(即第一三,二四象限角平分线) ,对称中心是坐标原点。6.若设正比例函数 y=mx 与反比例函数 y=n/x 交于 A、B 两点( m、n 同号) ,那么 A B 两点关于原点对称。7.设在平面内有反比例函数y=k/x 和一次函数 y=mx+n,要使它们有公共交点,则n2+4km(不小于) 0。8.反比例函数 y=k/x 的渐近线: x 轴与 y 轴。9.反比例函数关于正比例函数y=x,y=-x 轴对称 ,并且关于原点中心对称 . 1
3、0.反比例上一点 m 向 x、y 分别做垂线,交于q、w,则矩形 mwqo(o 为原点)的面积为 |k| 11.k 值相等的反比例函数重合,k 值不相等的反比例函数永不相交。12.|k|越大,反比例函数的图象离坐标轴的距离越远。13.反比例函数图象是中心对称图形,对称中心是原点精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 1 页,共 12 页精品资料欢迎下载一次函数(一)函数1、确定函数定义域的方法:(1)关系式为整式时,函数定义域为全体实数;(2)关系式含有分式时,分式的分母不等于零;(3)关系式含有二次根式时,被开放方数大于等于零;(4)关系
4、式中含有指数为零的式子时,底数不等于零;(5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。(二)一次函数1、一次函数的定义一般地,形如ykxb(k,b是常数,且0k)的函数,叫做一次函数,其中x 是自变量。当0b时,一次函数ykx,又叫做正比例函数。一次函数的解析式的形式是ykxb,要判断一个函数是否是一次函数,就是判断是否能化成以上形式当0b,0k时,ykx仍是一次函数当0b,0k时,它不是一次函数正比例函数是一次函数的特例,一次函数包括正比例函数2、正比例函数及性质一般地,形如y=kx(k 是常数, k0) 的函数叫做正比例函数,其中k 叫做比例系数 . 注:正比例函数一般形式
5、y=kx (k 不为零 ) k 不为零 x 指数为 1 b 取零当 k0 时,直线y=kx 经过三、一象限,从左向右上升,即随x 的增大 y 也增大;当k0 时,图像经过一、三象限;k0,y 随 x 的增大而增大;k0 时,向上平移;当b0 ,图象经过第一、三象限;k0,图象经过第一、二象限;b0 ,y 随 x 的增大而增大;k0 时,将直线y=kx 的图象向上平移b 个单位;当 b0 b0 经过第一、二、三象限经过第一、三、四象限经过第一、三象限图象从左到右上升,y 随 x 的增大而增大k0 时,向上平移;当b0 时,直线经过一、三象限;k0,y 随 x 的增大而增大; (从左向右上升)k0
6、时, 将直线 y=kx 的图象向上平移b个单位;b0 或 ax+b0) 【或左 (h0) 【或下 (k0)【或左 (h0)【或左 (h0)【或下 (k0)【或向下 (k0) 】平移 |k|个单位y=a(x-h )2+ky=a(x-h )2y=ax2+ky=ax22. 平移规律在原有函数的基础上“h值正右移,负左移;k值正上移,负下移” 概括成八个字“左加右减,上加下减” 方法二:cbxaxy2沿y轴平移 :向上(下)平移m个单位,cbxaxy2变成mcbxaxy2(或mcbxaxy2)cbxaxy2沿轴平移: 向左(右)平移m个单位,cbxaxy2变成cmxbmxay)()(2(或cmxbmx
7、ay)()(2)四、二次函数2ya xhk与2yaxbxc的比较从解析式上看,2ya xhk 与2yaxbxc是两种不同的表达形式,后者通过配方可以得到前者,即22424bacbya xaa,其中2424bacbhkaa,五、二次函数2yaxbxc图象的画法五点绘图法:利用配方法将二次函数2yaxbxc 化为顶点式2()ya xhk ,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图. 一般我们选取的五点为:顶点、与y轴的交点0c,、以及0c,关于对称轴对称的点2hc,、与 x 轴的交点10 x ,20 x ,(若与 x 轴没有交点,则取两组关于对称轴对称的点). 画草图
8、时应抓住以下几点:开口方向,对称轴,顶点,与x轴的交点,与y轴的交点 . 六、二次函数2yaxbxc的性质精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 8 页,共 12 页精品资料欢迎下载1. 当0a时,抛物线开口向上,对称轴为2bxa,顶点坐标为2424bacbaa,当2bxa时,y随 x 的增大而减小; 当2bxa时,y随 x 的增大而增大; 当2bxa时,y有最小值244acba2. 当0a时,抛物线开口向下,对称轴为2bxa,顶点坐标为2424bacbaa,当2bxa时,y随 x 的增大而增大;当2bxa时,y随 x 的增大而减小;当2b
9、xa时,y有最大值244acba七、二次函数解析式的表示方法1. 一般式:2yaxbxc ( a,b, c 为常数,0a) ;2. 顶点式:2()ya xhk ( a ,h,k为常数,0a) ;3. 两根式:12()()ya xxxx(0a,1x ,2x 是抛物线与x 轴两交点的横坐标). 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与 x 轴有交点,即240bac时,抛物线的解析式才可以用交点式表示二次函数解析式的这三种形式可以互化 . 八、二次函数的图象与各项系数之间的关系1. 二次项系数a二次函数2yaxbxc中, a 作为二次项系
10、数,显然0a 当0a时,抛物线开口向上,a的值越大,开口越小,反之a 的值越小,开口越大; 当0a时,抛物线开口向下,a的值越小,开口越小,反之a 的值越大,开口越大总结起来,a决定了抛物线开口的大小和方向,a的正负决定开口方向,a的大小决定开口的大小2. 一次项系数b在二次项系数a确定的前提下,b决定了抛物线的对称轴 在0a的前提下,当0b时,02ba,即抛物线的对称轴在y轴左侧;当0b时,02ba,即抛物线的对称轴就是y轴;当0b时,02ba,即抛物线对称轴在y轴的右侧 在0a的前提下,结论刚好与上述相反,即当0b时,02ba,即抛物线的对称轴在y轴右侧;当0b时,02ba,即抛物线的对称
11、轴就是y轴;当0b时,02ba,即抛物线对称轴在y轴的左侧精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 9 页,共 12 页精品资料欢迎下载ab的符号的判定:对称轴abx2在 y 轴左边则0ab,在 y 轴的右侧则0ab,概括的说就是“左同右异”3. 常数项 c 当0c时,抛物线与y轴的交点在x轴上方,即抛物线与y轴交点的纵坐标为正; 当0c时,抛物线与y轴的交点为坐标原点,即抛物线与y轴交点的纵坐标为0; 当0c时,抛物线与y轴的交点在x轴下方,即抛物线与y轴交点的纵坐标为负总结起来,c决定了抛物线与y轴交点的位置总之,只要abc, , 都确定
12、,那么这条抛物线就是唯一确定的二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与x 轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式九、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达1. 关于 x 轴对称2ya xb xc关于 x轴对称后,得到的解析式是2yaxbxc;2ya x
13、hk 关于 x 轴对称后,得到的解析式是2ya xhk ;2. 关于y轴对称2ya xb xc关于y轴对称后,得到的解析式是2yaxbxc;2ya xhk 关于y轴对称后,得到的解析式是2ya xhk ;3. 关于原点对称2ya xb xc关于原点对称后,得到的解析式是2yaxbxc;2yaxhk 关于原点对称后,得到的解析式是2ya xhk ;精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 10 页,共 12 页精品资料欢迎下载4. 关于顶点对称(即:抛物线绕顶点旋转180)2ya xb xc关于顶点对称后,得到的解析式是222byaxbxca;
14、2ya xhk 关于顶点对称后,得到的解析式是2ya xhk 5. 关于点mn,对称2ya xhk 关于点mn,对称后,得到的解析式是222ya xhmnk根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式十、二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与x 轴交点情况):一元二次方程20axbxc是二次函数2yaxbxc
15、当函数值0y时的特殊情况 . 图象与 x 轴的交点个数: 当240bac时,图象与x 轴交于两点1200A xB x,12()xx,其中的12xx,是一元二次方程200axbxca的两根这两点间的距离2214bacABxxa. 当0时,图象与x 轴只有一个交点; 当0时,图象与x 轴没有交点 . 1当0a时,图象落在x轴的上方,无论x为任何实数,都有0y;2当0a时,图象落在x 轴的下方,无论x 为任何实数,都有0y2. 抛物线2yaxbxc的图象与y轴一定相交,交点坐标为(0,)c;3. 二次函数常用解题方法总结: 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程; 求二次函数的最大
16、(小)值需要利用配方法将二次函数由一般式转化为顶点式; 根据图象的位置判断二次函数2yaxbxc 中 a ,b, c 的符号,或由二次函数中a,b,c 的符号判断图象的位置,要数形结合; 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与 x轴的一个交点坐标,可由对称性求出另一个交点坐标. 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 11 页,共 12 页精品资料欢迎下载二次函数与一元二次方程、一元二次不等式的关系从函数观点来看,一元二次不等式200axbxca的解集就是二次函数20fxaxbxc a的图像上, 位
17、于x轴上方的点的横坐标的集合;一元二次不等式200axbxca的解集就是二次函数20fxaxbxc a的图像上, 位于x轴下方的点的横坐标的集合;一元二次不等式200axbxca的解集就是二次函数20fxaxbxc a的图像上, 位于x轴上方的点和与x轴的交点的横坐标的集合;一元二次不等式200axbxca的解集就是二次函数20fxaxbxc a的图像上, 位于x轴下方的点和与x轴的交点的横坐标的集合一元二次方程200axbxca的解就是二次函数20fxaxbxc a的图像上, 与x轴的交点的横坐标0抛物线与x 轴有两个交点二次三项式的值可正、可零、可负一元二次方程有两个不相等实根0抛物线与x 轴只有一个交点二次三项式的值为非负一元二次方程有两个相等的实数根0抛物线与x 轴无交点二次三项式的值恒为正一元二次方程无实数根. 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 12 页,共 12 页