2022年初一初二数学知识点 .pdf

上传人:C****o 文档编号:33655367 上传时间:2022-08-12 格式:PDF 页数:9 大小:70.70KB
返回 下载 相关 举报
2022年初一初二数学知识点 .pdf_第1页
第1页 / 共9页
2022年初一初二数学知识点 .pdf_第2页
第2页 / 共9页
点击查看更多>>
资源描述

《2022年初一初二数学知识点 .pdf》由会员分享,可在线阅读,更多相关《2022年初一初二数学知识点 .pdf(9页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、第一章1.1 正数与负数在以前学过的 0 以外的数前面加上负号 “”的数叫负数 (negative number) 。与负数具有相反意义,即以前学过的0 以外的数叫做正数 (positive number) (根据需要,有时在正数前面也加上“+”)。1.2 有理数正整数、 0、负整数统称整数 (integer) ,正分数和负分数统称分数(fraction) 。整数和分数统称有理数 (rational number) 。通常用一条直线上的点表示数,这条直线叫数轴(number axis) 。数轴三要素:原点、正方向、单位长度。在直线上任取一个点表示数0,这个点叫做原点 (origin) 。只有符

2、号不同的两个数叫做互为相反数(opposite number) 。(例:2 的相反数是-2;0 的相反数是 0)数轴上表示数 a 的点与原点的距离叫做数a 的绝对值 (absolute value), 记作|a|。一个正数的绝对值是它本身; 一个负数的绝对值是它的相反数;0 的绝对值是 0。两个负数,绝对值大的反而小。1.3 有理数的加减法有理数加法法则:1.同号两数相加,取相同的符号,并把绝对值相加。2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。3.一个数同 0 相加,仍得这个数。有理数减法法则:减去一个数,等于加这个

3、数的相反数。1.4 有理数的乘除法有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。任何数同0 相乘,都得 0。名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 1 页,共 9 页 - - - - - - - - - 乘积是 1 的两个数互为倒数。有理数除法法则:除以一个不等于0 的数,等于乘这个数的倒数。两数相除,同号得正,异号得负,并把绝对值相除。0 除以任何一个不等于0 的数,都得 0。 m 求 n 个相同因数的积的运算,叫乘方,乘方的结果叫幂(power )。在 a

4、 的 n 次方中, a 叫做底数 (base number) ,n 叫做指数( exponent )。负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数,0 的任何次幂都是 0。把一个大于 10 的数表示成 a 10 的 n 次方的形式,使用的就是科学计数法。从一个数的左边第一个非0 数字起,到末位数字止, 所有数字都是这个数的有效数字(significant digit) 。第二章 一元一次方程2.1 从算式到方程方程是含有未知数的等式。方程都只含有一个未知数(元)x,未知数 x 的指数都是 1(次),这样的方程叫做一元一次方程 (linear equation with one

5、 unknown)。解方程就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解(solution) 。等式的性质:1.等式两边加(或减)同一个数(或式子),结果仍相等。2.等式两边乘同一个数,或除以同一个不为0 的数,结果仍相等。2.2 从古老的代数书说起 一元一次方程的讨论( 1)把等式一边的某项变号后移到另一边,叫做移项。第三章 图形认识初步3.1 多姿多彩的图形几何体也简称体 (solid)。包围着体的是面( surface )。名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - -

6、- - 第 2 页,共 9 页 - - - - - - - - - 3.2 直线、射线、线段线段公理:两点的所有连线中,线段做短(两点之间,线段最短)。连接两点间的线段的长度,叫做这两点的距离。3.3 角的度量1 度=60 分 1 分=60 秒 1 周角=360 度 1 平角=180 度3.4 角的比较与运算如果两个角的和等于90 度(直角),就说这两个叫互为余角(compiementary angle ),即其中每一个角是另一个角的余角。如果两个角的和等于180 度(平角),就说这两个叫互为补角(supplementary angle ),即其中每一个角是另一个角的补角。等角(同角)的补角相

7、等。等角(同角)的余角1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12 两直线平行,同位角相等13 两直线平行,内错角相等名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - -

8、- - - - - 第 3 页,共 9 页 - - - - - - - - - 14 两直线平行,同旁内角互补15 定理 三角形两边的和大于第三边16 推论 三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于18018 推论 1 直角三角形的两个锐角互余19 推论 2 三角形的一个外角等于和它不相邻的两个内角的和20 推论 3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22 边角边公理 (SAS) 有两边和它们的夹角对应相等的两个三角形全等23 角边角公理 ( ASA) 有两角和它们的夹边对应相等的两个三角形全等24 推论(AAS) 有两

9、角和其中一角的对边对应相等的两个三角形全等25 边边边公理 (SSS) 有三边对应相等的两个三角形全等26 斜边、 直角边公理 (HL) 有斜边和一条直角边对应相等的两个直角三角形全等27 定理 1 在角的平分线上的点到这个角的两边的距离相等28 定理 2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31 推论 1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论 3 等边三角形的各角都相等,并且每一个角都等

10、于6034 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论 1 三个角都相等的三角形是等边三角形36 推论 2 有一个角等于 60 的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30 那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 4 页,共 9 页 - - - - - - - - - 39 定理 线段垂直平分线上的点和这条线段两个端点的距离

11、相等40 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理 1 关于某条直线对称的两个图形是全等形43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44 定理 3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上第一章一次函数1 函数的定义,函数的定义域、值域、表达式,函数的图像2 一次函数和正比例函数,包括他们的表达式、增减性、图像3 从函数的观点看方程、方程组和不等式第二章 数据的描述1 了解几种常见的统计图表:条形图、扇形图、折线图、复合条形图、直

12、方图,了解各种图表的特点条形图特点:(1)能够显示出每组中的具体数据;(2)易于比较数据间的差别扇形图的特点:(1)用扇形的面积来表示部分在总体中所占的百分比;(2)易于显示每组数据相对与总数的大小折线图的特点;易于显示数据的变化趋势直方图的特点:(1)能够显示各组频数分布的情况;(2)易于显示各组之间频数的差别2 会用各种统计图表示出一些实际的问题名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 5 页,共 9 页 - - - - - - - - - 第三章 全等三角形1 全等三角形

13、的性质:全等三角形的对应边、对应角相等2 全等三角形的判定边边边、边角边、角边角、角角边、直角三角形的HL 定理3 角平分线的性质角平分线上的点到角的两边的距离相等;到角的两边距离相等的点在角的平分线上。第四章 轴对称1 轴对称图形和关于直线对称的两个图形2 轴对称的性质轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线;如果两个图形关于某条直线对称, 那么对称轴是任何一对对应点所连的线段的垂直平分线;线段垂直平分线上的点到线段两个端点的距离相等;到线段两个端点距离相等的点在这条线段的垂直平分线上3 用坐标表示轴对称点 (x, y) 关于 x 轴对称的点的坐标是 (x,-y), 关于 y

14、轴对称的点的坐标是 (-x,y),关于原点对称的点的坐标是(-x,-y). 4 等腰三角形等腰三角形的两个底角相等;(等边对等角)等腰三角形的顶角平分线、底边上的中线、底边上的高线互相重合;(三线合一)一个三角形的两个相等的角所对的边也相等。(等角对等边)5 等边三角形的性质和判定等边三角形的三个内角都相等,都等于60 度;三个角都相等的三角形是等边三角形;有一个角是 60 度的等腰三角形是等边三角形;名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 6 页,共 9 页 - - - -

15、 - - - - - 推论:直角三角形中, 如果有一个锐角是30 度,那么他所对的直角边等于斜边的一半。在三角形中,大角对大边,大边对大角。第五章 整式1 整式定义、同类项及其合并2 整式的加减3 整式的乘法(1)同底数幂的乘法:(2)幂的乘方(3)积的乘方(4)整式的乘法4 乘法公式(1)平方差公式(2)完全平方公式5 整式的除法(1)同底数幂的除法(2)整式的除法6 因式分解(1)提共因式法(2)公式法(3)十字相乘法初二下册知识点第一章 分式1 分式及其基本性质名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理

16、- - - - - - - 第 7 页,共 9 页 - - - - - - - - - 分式的分子和分母同时乘以 (或除以) 一个不等于零的整式, 分式的只不变2 分式的运算(1)分式的乘除乘法法则:分式乘以分式, 用分子的积作为积的分子, 分母的积作为积的分母除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。(2) 分式的加减加减法法则:同分母分式相加减,分母不变,把分子相加减;异分母分式相加减, 先通分,变为同分母的分式, 再加减3 整数指数幂的加减乘除法4 分式方程及其解法第二章 反比例函数1 反比例函数的表达式、图像、性质图像:双曲线表达式: y=k/x(k 不为 0

17、) 性质:两支的增减性相同;2 反比例函数在实际问题中的应用第三章 勾股定理1 勾股定理:直角三角形的两个直角边的平方和等于斜边的平方2 勾股定理的逆定理: 如果一个三角形中, 有两个边的平方和等于第三条边的平方,那么这个三角形是直角三角形。第四章 四边形1 平行四边形性质:对边相等;对角相等;对角线互相平分。判定:两组对边分别相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形;名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 8 页,共 9 页 - - - - - - -

18、 - - 对角线互相平分的四边形是平行四边形;一组对边平行而且相等的四边形是平行四边形。推论:三角形的中位线平行第三边,并且等于第三边的一半。2 特殊的平行四边形:矩形、菱形、正方形(1) 矩形性质:矩形的四个角都是直角;矩形的对角线相等;矩形具有平行四边形的所有性质判定: 有一个角是直角的平行四边形是矩形;对角线相等的平行四边形是矩形;推论: 直角三角形斜边的中线等于斜边的一半。(2) 菱形性质:菱形的四条边都相等;菱形的对角线互相垂直,并且每一条对角线平分一组对角;菱形具有平行四边形的一切性质判定:有一组邻边相等的平行四边形是菱形;对角线互相垂直的平行四边形是菱形;四边相等的四边形是菱形。(3) 正方形:既是一种特殊的矩形,又是一种特殊的菱形,所以它具有矩形和菱形的所有性质。3 梯形:直角梯形和等腰梯形等腰梯形:等腰梯形同一底边上的两个角相等;等腰梯形的两条对角线相等;同一个底上的两个角相等的梯形是等腰梯形。第五章 数据的分析加权平均数、中位数、众数、极差、方差名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 9 页,共 9 页 - - - - - - - - -

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 高考资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁