《CANOPEN协议详解资料讲解.doc》由会员分享,可在线阅读,更多相关《CANOPEN协议详解资料讲解.doc(51页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、如有侵权,请联系网站删除,仅供学习与交流CANOPEN协议详解【精品文档】第 51 页一、CAN-BUS介绍1CAN的基本概念、特点 CAN 是 Controller Area Network的缩写(以下称为 CAN),是 ISO*1国际标准化的串行通信协议。CAN 协议如表 3 所示涵盖了 ISO 规定的 OSI 基本参照模型中的传输层、数据链路层及物理层。 CAN 协议中关于 ISO/OSI 基本参照模型中的传输层、数据链路层及物理层,具体有哪些定义如图所示。. ISO/OSI 基本参照模型ISO/OSI 基本参照模型各层定义的主要项目软件控制7 层:应用层由实际应用程序提供可利用的服务。
2、6 层:表示层进行数据表现形式的转换。如:文字设定、数据压缩、加密等的控制5 层:会话层为建立会话式的通信,控制数据正确地接收和发送。4 层:传输层控制数据传输的顺序、传送错误的恢复等,保证通信的品质。如:错误修正、再传输控制。3 层:网络层进行数据传送的路由选择或中继。如:单元间的数据交换、地址管理。硬件控制2 层:数据链路层将物理层收到的信号(位序列)组成有意义的数据,提供传输错误控制等数据传输控制流程。 如:访问的方法、数据的形式。通信方式、连接控制方式、同步方式、检错方式。 应答方式、通信方式、包(帧)的构成。 位的调制方式(包括位时序条件)。1 层:物理层规定了通信时使用的电缆、连接
3、器等的媒体、电气信号规格等,以实现设备间的信号传送。 如:信号电平、收发器、电缆、连接器等的形态。【注】 *1 OSI:Open Systems Interconnection (开放式系统间互联)CAN的特点 CAN 协议具有以下特点。 (1) 多主控制 在总线空闲时,所有的单元都可开始发送消息(多主控制)。 最先访问总线的单元可获得发送权。 (2) 消息的发送 在 CAN 协议中,所有的消息都以固定的格式发送。总线空闲时,所有与总线相连的单元都可以开始发送新消息。两个以上的单元同时开始发送消息时,根据标识符(Identifier 以下称为 ID)决定优先级。ID 并不是表示发送的目的地址,
4、而是表示访问总线的消息的优先级。两个以上的单元同时开始发送消息时,对各消息 ID 的每个位进行逐个仲裁比较。仲裁获胜(被判定为优先级最高)的单元可继续发送消息,仲裁失利的单元则立刻停止发送而进行接收工作。 (3) 系统的柔软性 与总线相连的单元没有类似于“地址”的信息。因此在总线上增加单元时,连接在总线上的其它单元的软硬件及应用层都不需要改变。 (4) 通信速度 根据整个网络的规模,可设定适合的通信速度。 在同一网络中,所有单元必须设定成统一的通信速度。即使有一个单元的通信速度与其它的不一样,此单元也会输出错误信号,妨碍整个网络的通信。不同网络间则可以有不同的通信速度。 (5) 远程数据请求
5、可通过发送“遥控帧” 请求其他单元发送数据。 (6) 错误检测功能错误通知功能错误恢复功能 所有的单元都可以检测错误(错误检测功能)。 检测出错误的单元会立即同时通知其他所有单元(错误通知功能)。 正在发送消息的单元一旦检测出错误,会强制结束当前的发送。强制结束发送的单元会不断反复地重新发送此消息直到成功发送为止(错误恢复功能)。 (7) 故障封闭 CAN 可以判断出错误的类型是总线上暂时的数据错误(如外部噪声等)还是持续的数据错误(如单元内部故障、驱动器故障、断线等)。由此功能,当总线上发生持续数据错误时,可将引起此故障的单元从总线上隔离出去。 (8) 连接 CAN 总线是可同时连接多个单元
6、的总线。可连接的单元总数理论上是没有限制的。但实际上可连接的单元数受总线上的时间延迟及电气负载的限制。降低通信速度,可连接的单元数增加;提高通信速度,则可连接的单元数减少。2. CAN协议及标准规格 2.1 ISO 标准化的CAN协议 CAN 协议经 ISO 标准化后有 ISO11898 标准和 ISO11519-2 标准两种。ISO11898和 ISO11519-2 标准对于数据链路层的定义相同,但物理层不同。 (1) 关于 ISO11898 ISO11898 是通信速度为 125kbps-1Mbps 的 CAN 高速通信标准。 目前,ISO11898 追加新规约后,成为 ISO11898-
7、1 新标准。 (2) 关于 ISO11519 ISO11519 是通信速度为 125kbps以下的 CAN 低速通信标准。 ISO11519-2 是 ISO11519-1 追加新规约后的版本。【注】 *1 通信速度 通信速度根据系统设定。 *2 总线长度 总线的长度根据系统设定。 通信速度和最大总线长度的关系如下图所示。CAN 收发器根据两根总线(CAN_High 和 CAN_Low)的电位差来判断总线电平。 总线电平分为显性电平和隐性电平两种。 总线必须处于两种电平之一。 总线上执行逻辑上的线“与”时,显性电平为“0”,隐性电平为“1”。物理层的特征如下图所示。ISO11898、ISO115
8、19-2 的物理层特征2.2 CAN和标准规格 不仅是 ISO,SAE(Society of Automotive Engineers)等其它的组织、团体、企业也对 CAN 协议进行了标准化。 基于 CAN 的各种标准规格如表 6 所示面向汽车的通信协议以通信速度为准进行了分类。 表 6. CAN 协议和标准规格名称波特率规格适用领域SAE J1939-11250k双线式、屏蔽双绞线卡车、大客车SAE J1939-12250k双线式、屏蔽双绞线、12V供电农用机械SAE J2284500k双线式、双绞线(非屏蔽)汽车(高速:动力、传动系统)SAE J2411133.3k、83.3k单线式汽车(
9、低速:车身系统)NMEA-200062.5k、125k、250k、500k、1M双线式、屏蔽双绞线供电船舶DeviceNet125k、250k、500k双线式、屏蔽双绞线24V 供电工业设备CANopen10k、20k、50k、125k、250k、500k、800k、1M双线式、双绞线可选(屏蔽、供电)工业设备SDS125k、250k、500k、1M双线式、屏蔽双绞线可选(供电)工业设备3. CAN协议帧发送细节3.1 帧的种类 通信是通过以下 5 种类型的帧进行的。 数据帧 遥控帧 错误帧 过载帧 帧间隔 另外, 数据帧和遥控帧有标准格式和扩展格式两种格式。 标准格式有 11 个位的标识符
10、(Identifier: 以下称 ID) ,扩展格式有 29 个位的 ID。 各种帧的用途如表所示。帧的种类及用途帧帧用途数据帧用于发送单元向接收单元传送数据的帧。遥控帧用于接收单元向具有相同 ID 的发送单元请求数据的帧。错误帧用于当检测出错误时向其它单元通知错误的帧。过载帧用于接收单元通知其尚未做好接收准备的帧。帧间隔用于将数据帧及遥控帧与前面的帧分离开来的帧。3.2 数据帧 数据帧由 7 个段构成。 数据帧的构成如图所示。 (1) 帧起始 表示数据帧开始的段。 (2) 仲裁段 表示该帧优先级的段。 (3) 控制段 表示数据的字节数及保留位的段。 (4) 数据段 数据的内容,可发送 08
11、个字节的数据。 (5) CRC 段 检查帧的传输错误的段。 (6) ACK段 表示确认正常接收的段。 (7) 帧结束 表示数据帧结束的段。 下面对帧的构成进行说明。数据帧的构成(1) 帧起始(标准、扩展格式相同) 表示帧开始的段。1 个位的显性位。数据帧(帧起始)总线上的电平有显性电平和隐性电平两种。 总线上执行逻辑上的线“与”时,显性电平的逻辑值为“0”,隐性电平为“1”。 “显性”具有“优先”的意味,只要有一个单元输出显性电平,总线上即为显性电平。并且,“隐性”具有“包容”的意味,只有所有的单元都输出隐性电平,总线上才为隐性电平。(显性电平比隐性电平更强。)(2) 仲裁段 表示数据的优先级
12、的段。 标准格式和扩展格式在此的构成有所不同。数据帧(仲裁段)【注】 ID 标准格式的 ID 有 11 个位。从 ID28 到 ID18 被依次发送。禁止高 7 位都为隐性。 (禁止设定:ID=1111111XXXX) 扩展格式的 ID 有 29 个位。基本 ID 从 ID28 到 ID18,扩展 ID 由 ID17 到 ID0 表示。基本 ID 和标准格式的 ID 相同。禁止高 7 位都为隐性。(禁止设定:基本 ID=1111111XXXX)(3) 控制段 控制段由 6 个位构成,表示数据段的字节数。标准格式和扩展格式的构成有所不同。数据帧(控制段)【注】 *1 保留位(r0、r1) 保留位
13、必须全部以显性电平发送。但接收方可以接收显性、隐性及其任意组合的电平。 *2 数据长度码(DLC) 数据长度码与数据的字节数的对应关系如表 8 所示。 数据的字节数必须为 08 字节。但接收方对 DLC = 915 的情况并不视为错误。数据长度码和字节数的关系(4) 数据段(标准、扩展格式相同) 数据段可包含 08 个字节的数据。从 MSB(最高位)开始输出。(5) CRC 段(标准/扩展格式相同) CRC段是检查帧传输错误的帧。由 15 个位的 CRC 顺序和 1 个位的 CRC界定符(用于分隔的位)构成。【注】 CRC 顺序 CRC 顺序是根据多项式生成的 CRC 值,CRC 的计算范围包
14、括帧起始、仲裁段、控制段、数据段。 接收方以同样的算法计算 CRC 值并进行比较,不一致时会通报错误。(6) ACK段 ACK 段用来确认是否正常接收。由 ACK 槽(ACK Slot)和 ACK 界定符 2 个位构成。【注】 *1 发送单元的 ACK段 发送单元在 ACK段发送 2 个位的隐性位。 *2 接收单元的 ACK段 接收到正确消息的单元在 ACK槽(ACK Slot)发送显性位, 通知发送单元正常接收结束。 这称作“发送 ACK”或者“返回 ACK”。发送 ACK 的是在既不处于总线关闭态也不处于休眠态的所有接收单元中,接收到正常消息的单元发送单元不发送 ACK。所谓正常消息是指不
15、含填充错误、格式错误、CRC错误的消息。3.3 遥控帧 接收单元向发送单元请求发送数据所用的帧。遥控帧由 6 个段组成。遥控帧没有数据帧的数据段。 遥控帧的构成如图所示。 (1) 帧起始(SOF) 表示帧开始的段。 (2) 仲裁段 表示该帧优先级的段。可请求具有相同 ID 的数据帧。 (3) 控制段 表示数据的字节数及保留位的段。 (4) CRC 段 检查帧的传输错误的段。 (5) ACK段 表示确认正常接收的段。 (6) 帧结束 表示遥控帧结束的段。遥控帧的构成 数据帧和遥控帧的不同 遥控帧的 RTR 位为隐性位,没有数据段。 没有数据段的数据帧和遥控帧可通过 RTR 位区别开来。 遥控帧没
16、有数据段,数据长度码该如何表示? 遥控帧的数据长度码以所请求数据帧的数据长度码表示。 没有数据段的数据帧有何用途? 例如,可用于各单元的定期连接确认/应答、或仲裁段本身带有实质性信息的情况下。3.4 错误帧 用于在接收和发送消息时检测出错误通知错误的帧。错误帧由错误标志和错误界定符构成。 错误帧的构成如图所示。 (1) 错误标志 错误标志包括主动错误标志和被动错误标志两种。 主动错误标志:6 个位的显性位。 被动错误标志:6 个位的隐性位。 (2) 错误界定符 错误界定符由 8 个位的隐性位构成。3.5 过载帧 过载帧是用于接收单元通知其尚未完成接收准备的帧。过载帧由过载标志和过载界定符构成。
17、 过载帧的构成如图所示。 (1) 过载标志 6 个位的显性位。 过载标志的构成与主动错误标志的构成相同。 (2) 过载界定符 8 个位的隐性位。 过载界定符的构成与错误界定符的构成相同。3.6 帧间隔 帧间隔是用于分隔数据帧和遥控帧的帧。数据帧和遥控帧可通过插入帧间隔将本帧与前面的任何帧(数据帧、遥控帧、错误帧、过载帧)分开。 过载帧和错误帧前不能插入帧间隔。 帧间隔的构成如图所示。3.7 优先级的决定 在总线空闲态,最先开始发送消息的单元获得发送权。 多个单元同时开始发送时,各发送单元从仲裁段的第一位开始进行仲裁。连续输出显性电平最多的单元可继续发送。 仲裁的过程如图 28 所示。3.8 位
18、填充 位填充是为防止突发错误而设定的功能。当同样的电平持续 5 位时则添加一个位的反型数据。 位填充的构成如图所示。3.9 错误的种类 错误共有 5 种。多种错误可能同时发生。3.11 位时序 由发送单元在非同步的情况下发送的每秒钟的位数称为位速率。一个位可分为 4 段。 同步段(SS) 传播时间段(PTS) 相位缓冲段 1(PBS1) 相位缓冲段 2(PBS2) 这些段又由可称为 Time Quantum(以下称为 Tq)的最小时间单位构成。 1 位分为 4 个段,每个段又由若干个 Tq 构成,这称为位时序。 1 位由多少个 Tq 构成、每个段又由多少个 Tq 构成等,可以任意设定位时序。通
19、过设定位时序,多个单元可同时采样,也可任意设定采样点。 各段的作用和 Tq 数如表 11 所示。1 个位的构成如图所示。3.12 硬件同步 接收单元在总线空闲状态检测出帧起始时进行的同步调整。 在检测出边沿的地方不考虑 SJW 的值而认为是 SS 段。 硬件同步的过程如图 33 所示。3.13 再同步 在接收过程中检测出总线上的电平变化时进行的同步调整。 每当检测出边沿时,根据 SJW 值通过加长 PBS1 段,或缩短 PBS2 段,以调整同步。但如果发生了超出 SJW值的误差时,最大调整量不能超过 SJW 值。 再同步如图所示。3.2 错误 3.2.1 错误状态的种类 单元始终处于 3 种状
20、态之一。 (1) 主动错误状态 主动错误状态是可以正常参加总线通信的状态。 处于主动错误状态的单元检测出错误时,输出主动错误标志。 (2) 被动错误状态 被动错误状态是易引起错误的状态。 处于被动错误状态的单元虽能参加总线通信,但为不妨碍其它单元通信,接收时不能积极地发送错误通知。处于被动错误状态的单元即使检测出错误,而其它处于主动错误状态的单元如果没发现错误,整个总线也被认为是没有错误的。 处于被动错误状态的单元检测出错误时,输出被动错误标志。 另外,处于被动错误状态的单元在发送结束后不能马上再次开始发送。在开始下次发送前,在间隔帧期间内必须插入“延迟传送”(8 个位的隐性位)。 (3) 总
21、线关闭态 总线关闭态是不能参加总线上通信的状态。 信息的接收和发送均被禁止。 这些状态依靠发送错误计数和接收错误计数来管理,根据计数值决定进入何种状态。错误状态和计数值的关系如表 1 及图 4 所示。 二、CANOPEN发展1、介绍从 OSI 网络模型的角度来看同,现场总线网络一般只实现了第 1 层(物理层)、第 2 层(数据链路层)、 第 7 层(应用层)。因为现场总线通常只包括一个网段,因此不需要第 3 层(传输层)和第 4 层(网络层), 也不需要第 5 层(会话层)第 6 层(描述层)的作用。CAN(Controller Area Network)现场总线仅仅定义了第 1 层、第 2
22、层(见 ISO11898 标准);实际设计 中,这两层完全由硬件实现,设计人员无需再为此开发相关软件(Software)或固件(Firmware)。同时,CAN 只定义物理层和数据链路层,没有规定应用层,本身并不完整,需要一个高层协议来定义 CAN 报文中的 11/29 位标识符、8 字节数据的使用。 应用层(Application layer):为网络中每一个有效设备都能够提供一组有用的服务与协议。 通讯描述(Communication profile):提供配置设备、通讯数据的含义,定义数据通讯方式。 设备描述(Device proflile):为设备(类)增加符合规范的行为。CANope
23、n 协议是 CAN-in-Automation(CiA)定义的标准之一,并且在发布后不久就获得了广泛的承认。尤其是在欧洲, CANopen 协议被认为是在基于 CAN 的工业系统中占领导地位的标准。大多数重要的设备类型,例如数字 和模拟的输入输出模块、驱动设备、操作设备、控制器、可编程控制器或编码器,都在称为“设备描述” 的协议中进行描述;“设备描述”定义了不同类型的标准设备及其相应的功能。依靠 CANopen 协议的支持, 可以对不同厂商的设备通过总线进行配置。在 OSI 模型中,CAN 标准、CANopen 协议之间的关系如下图所示:CiA DSP-401 ViA DSP-404CiA D
24、SP-xxxApplicationLayerCommunication Pr ofile CiA DS-301Data LinkLayerChipCAN 2.0APhysical LayerISO11898Cable图 1.1CAN、CANopen 标准在 OSI 网络模型中的位置框图CiA 102 DS V2.0 CAN physical layer for industrial applications CiA 102 WD V2.0.2: CAN physical layer specification for industrial applications CiA 103 DSP V1
25、.0: CANopen intrinsically safe capable - Physical layer specification CiA 150 DS V1.1 CAN power management layer specification CiA 201/207 DS V1.1 CAN Application layer for industrial applications CiA 301 DS V4.0.2: CANopen application layer and communication profile CiA 302 DSP V3.3: Framework for
26、CANopen managers and programmable CANopen devices CiA 302-1 DSP V4.0 CANopen additional application layer functions Part 1: General definitions CiA 302-2 DSP V4.0 CANopen additional application layer functions - Part 2: Network management CiA 302-3 WD V3.4.4: CANopen additional application layer fun
27、ctions - Part 3: Configuration and program download CiA 302-4 DSP V4.0 CANopen additional application layer functions - Part 4: Network variables and process image CiA 302-5 WD V3.4.4 CANopen additional application layer functions - Part 5: SDO manager CiA 302-6 DSP V4.0 CANopen additional applicati
28、on layer functions - Part 6: Network redundancy CiA 302-7 WDP V0.0.4 CANopen additional application layer functions - Part 7: Multi-level networking CiA 303-1 DR V1.5: CANopen additional specification - Part 1: Cabling and connector pin assignment CiA 303-2 DR V1.4: CANopen additional specification
29、- Part 2: Representation of SI units and prefixes CiA 303-3 DR V1.3: CANopen additional specification - Part 3: Indicator specification CiA 304 DS V1.0.1: CANopen framework safety-relevant communication CiA 305 DSP V2.0: CANopen layer setting services (LSS) and protocols CiA 306 DS V1.3: Electronic
30、data sheet specification for CANopen CiA 307 DSP V1.1.1: CANopen framework for maritime electronics CiA 308 TR V1.0.1: CANopen performance measurement basics CiA 309-1 DS V1.1: Interfacing CANopen with TCP/IP - Part 1: General principles and services CiA 309-2 DS V1.1: Interfacing CANopen with TCP/I
31、P - Part 2: Modbus/TCP mapping CiA 309-3 DS V1.1: Interfacing CANopen with TCP/IP - Part 3: ASCII mapping CiA 3101 WD V1.0.5: CANopen Conformance test plan Part 1: CiA 301 testing CiA 311 DSP V1.0: CANopen device description - XML schema definition CiA 3121 WD V0.0.1: CANopen Device profile test pla
32、n Part 1: General definitions CiA 3122 WD V0.0.1: CANopen Device profile conformance test plan Part 2: Generic I/O modules CiA 400 DSP V1.0: CANopen interface profile - Multi-level networking CiA 401 DSP V3.0: CANopen device profile generic I/O modules CiA 402-1 DSP V3.0 CANopen drives and motion co
33、ntrol device profile - Part 1: General definition CiA 402-2 DSP V3.0 CANopen drives and motion control device profile Part 2: Operation modes and application data CiA 402-3 DSP V3.0 CANopen drives and motion control device profile Part 3: PDO mapping CiA 404 DS V1.2: CANopen device profile measuring
34、 devices and closed-loop controllers CiA 405 DS V2.0: CANopen interface and device profile for IEC 61131-3 programmable devices CiA 406 DS V3.2: CANopen device profile for encoder CiA 408 DS V1.5.2: CANopen profile fluid power technology proportional valves and hydraulic transmissions CiA 410 DS V1.
35、2: CANopen profile for inclinometer CiA 412-1 DS V1.0 CANopen profiles for medical devices - Part 1: General definitions CiA 412-2 DS V1.0 CANopen profiles for medical devices - Part 2: Automatic X-ray collimator CiA 412-6 DSP V1.0 CANopenprofiles for medical devices - Part 6: Dose measurement syste
36、m CiA 413-1 DSP V2.0: CANopen device profiles for truck gateways - Part 1: General definitions and default communication objects CiA 413-1 WD V2.0.2 CANopen device profile for truck gateways - Part 1: General definitions CiA 413-2 DSP V2.0: CANopen device profiles for truck gateways - Part 2: Applic
37、ation object for brake and running gear CiA 413-3 DSP V2.0: CANopen device profile for truck gateways - Part 3: Application objects for other than brake and running gear equipment CiA 413-3 WD V2.0.2 CANopen device profile for truck gateways - Part 3: Other than brake and running gear devices CiA 41
38、3-4 WDP V0.0.6 CANopen device profile for truck gateways - Part 4: Application objects for diagnostics CiA 413-5 DSP V1.0: CANopen device profiles for truck gateways - Part 5: Application objects for superstructure CiA 413-5 WD V1.0.2 CANopen device profile for truck gateways - Part 5: Superstructur
39、e objects CiA 413-6 DSP V1.0: CANopen device profiles for truck gateways - Part 6: Framework for J1939-based networks CiA 413-6 WD V1.0.2 CANopen device profile for truck gateways - Part 6: Framework for J1939-based networks CiA 413-7 WD V0.0.1.0 CANopen device profile for truck gateways - Part 7: C
40、ANopen tunneling for ISO 11992-3 based networks CiA 414-1 DS V1.1: CANopen device profiles for weaving machines Part 1: General definitions CiA 414-2 DS V1.1: CANopen device profiles for weaving machines Part 2: Feeders CiA 415 DSP V2.1 CANopen sensor system application profile - For road constructi
41、on machines CiA 416-1 DSP V2.0: CANopen application profile for building door control - Part 1: General definitions, start-up procedures and system security CiA 416-2 DSP V2.0: CANopen application profile for building door control - Part 2: Virtual devices overview CiA 416-3 DSP V2.0: CANopen applic
42、ation profile for building door control - Part 3: Pre-defined communication objects and application objects specification CiA 417-1 DSP V1.0.1 CANopen application profile for lift control systems - Part 1: General definitions and physical layer specifications CiA 417-2 DSP V1.0.1 CANopen application
43、 profile for lift control systems - Part 2: Virtual device definitions CiA 417-3 DSP V1.0.1 CANopen application profile for lift control systems - Part 3: Pre-defined communication objects CiA 417-4 DSP V1.0.1 CANopen application profile for lift control systems - Part 4: Detailed application object
44、 specification CiA 418 DS V1.0.1: CANopen device profile for battery modules CiA 419 DS V1.0.1: CANopen device profile for battery charger CiA 420-1 DS V3.0 CANopen profiles for extruder downstream devices - Part 1: General definitions CiA 420-2 DS V3.0 CANopen profiles for extruder downstream devic
45、es - Part 2: Puller CiA 420-3 DS V3.0 CANopen profiles for extruder downstream devices - Part 3: Corrugator CiA 420-4 DS V3.0 CANopen profiles for extruder downstream devices - Part 4: Saw CiA 420-5 DS V2.0 CANopen profiles for extruder downstream devices - Part 5: Simple and advanced co-extruder Ci
46、A 420-6 DS V1.0 CANopen profiles for extruder downstream devices - Part 6: Calibration-table CiA 421-1 DSP V1.0: CANopen application profile for train vehicle control system - Part 1: General definitions CiA 421-4 DSP V1.0: CANopen application profile for train vehicle control system - Part 4: Auxiliary operating system CiA 421-5 DSP V1.0: CANopen application profile for train vehicle control networks - Part 5: Power (drive) system CiA 421-9 WD V0.0: CANopen application profile for train vehicle control sys