《华科线性代数复习重点.doc》由会员分享,可在线阅读,更多相关《华科线性代数复习重点.doc(11页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、如有侵权,请联系网站删除,仅供学习与交流华科线性代数复习重点【精品文档】第 11 页第一部分 行列式重点:1 排列的逆序数(P.5例4;P.26第2、4题)2 行列式按行(列)展开法则(P.21例13;P.28第9题)3 行列式的性质及行列式的计算(P.27第8题)【主要内容】1、行列式的定义、性质、展开定理、及其应用克莱姆法则2、排列与逆序3、方阵的行列式4、几个重要公式:(1); (2); (3); (4); (5); (6); (7) ; (8) (其中为阶方阵,为常数)5、行列式的常见计算方法:(1)利用性质化行列式为上(下)三角形;(2)利用行列式的展开定理降阶;(3)根据行列式的特
2、点借助特殊行列式的值【要求】1、了解行列式的定义,熟记几个特殊行列式的值。2、掌握排列与逆序的定义,会求一个排列的逆序数。3、能熟练应用行列式的性质、展开法则准确计算3-5阶行列式的值。4、会计算简单的阶行列式。5、知道并会用克莱姆法则。第二部分 矩阵1 矩阵的运算性质2 矩阵求逆及矩阵方程的求解(P.56第17、18题;P.78第5题)3 伴随阵的性质(P.41例9;P.56第23、24题;P.109第25题)、正交阵的性质(P.116)4 矩阵的秩的性质(P.69至71;P.100例13、14、15)【主要内容】1、矩阵的概念、运算性质、特殊矩阵及其性质。2、方阵的行列式3、可逆矩阵的定义
3、、性质、求法(公式法、初等变换法、分块对角阵求逆)。4、阶矩阵可逆为非奇异(非退化)的矩阵。为满秩矩阵。只有零解有唯一解的行(列)向量组线性无关的特征值全不为零。可以经过初等变换化为单位矩阵。可以表示成一系列初等矩阵的乘积。5、矩阵的初等变换与初等矩阵的定义、性质及其二者之间的关系。6、矩阵秩的概念及其求法(1)定义法;(2)初等变换法)。7、矩阵的分块,分块矩阵的运算:加法,数乘,乘法以及分块矩阵求逆。【要求】1、 了解矩阵的定义,熟悉几类特殊矩阵(单位矩阵,对角矩阵,上、下三角形矩阵,对称矩阵,可逆矩阵,伴随矩阵,正交矩阵)的特殊性质。2、熟悉矩阵的加法,数乘,乘法,转置等运算法则,会求方
4、阵的行列式。3、熟悉矩阵初等变换与初等矩阵,并知道初等变换与初等矩阵的关系。4、掌握矩阵可逆的充要条件,会求矩阵的逆矩阵。5、掌握矩阵秩的概念,会求矩阵的秩。6、掌握分块矩阵的概念,运算以及分块矩阵求逆矩阵。第三部分 线性方程组1 线性方程组的解的判定,带参数的方程组的解的判定2 齐次线性方程组的解的结构(基础解系与通解的关系)3 非齐次线性方程组的解的结构(通解)【主要内容】1、向量、向量组的线性表示:设有单个向量,向量组:,向量组:,则(1)向量可被向量组线性表示(2)向量组可被向量组线性表示(3) 向量组与向量组等价的充分必要条件是:(4)基本题型:判断向量或向量组是否可由向量组线性表示
5、?如果能,写出表达式。解法:以向量组:以及向量或向量组:为列向量构成矩阵,并对其进行初等行变换化为简化阶梯型矩阵,最终断定。2、向量组的线性相关性判别向量组的线性相关、线性无关的常用方法:方法一:(1)向量方程只有零解向量组 线性无关;(2)向量方程有非零解向量组 线性相关。方法二:求向量组的秩(1)秩小于个数s向量组线性相关(2)秩等于个数s 向量组线性无关。(3)特别的,如果向量组的向量个数与向量的维数相同,则向量组线性无关以向量组为列向量的矩阵的行列式非零;向量组线性相关以向量组为列向量的矩阵的行列式为零。3、向量组的极大无关组的概念(与向量空间的基、齐次线性方程组的基础解系的关系)及其
6、求法。基本题型:判断向量组的相关性以及求出向量组的极大无关组。4、等价向量组的定义、性质、判定。5、向量组的秩与矩阵的秩之关系。【要求】1、掌握向量组、线性组合和线性表示的概念,知道两个向量组等价的含义。2、掌握向量组线性相关、线性无关的定义,并会判断一个具体向量组的线性相关性。3、知道向量组的秩与矩阵的秩的关系,会求一个具体向量组的秩及其极大无关组。4、了解向量空间及其基和维数的概念第四部分 向量组(矩阵、方程组、向量组三者之间可以相互转换)1向量组的线性表示2向量组的线性相关性3向量组的秩【主要内容】1、齐次线性方程组只有零解系数矩阵的秩未知量个数n;2、齐次线性方程组有非零解系数矩阵的秩
7、未知量个数n.3、非齐次线性方程组无解增广矩阵秩系数矩阵的秩;4、非齐次线性方程组有解增广矩阵秩系数矩阵的秩 特别地,1)增广矩阵的秩系数矩阵的秩未知量个数n非齐次线性方程组有唯一解;2)增广矩阵的秩系数矩阵的秩 未知量个数n非齐次线性方程组有无穷多解。【要求】1、掌握齐次线性方程组解的性质、基础解系的求法,2、掌握非齐次线性方程组解的结构,熟悉非齐次线性方程组有解的等价条件。3、知道齐次与非齐次线性方程组的解之间的关系。4、会求解非齐次线性方程组。第五部分 方阵的特征值及特征向量1施密特正交化过程2特征值、特征向量的性质及计算(P.120例8、9、10;P.135第7至13题)3矩阵的相似对
8、角化,尤其是对称阵的相似对角化(P.135第15、16、19、23题)【主要内容】1、向量的内积、长度、夹角等概念及其计算方法。2、向量的正交关系及正交向量组的含义。3、施密特正交化方法。4、方阵的特征值与特征向量的概念及其计算方法。(1)特征值求法:解特征方程;(2)特征向量的求法:求方程组的基础解系。5、相似矩阵的定义()、性质(相似、有相同的特征值)。6、判断矩阵是否可以对角化以及对角化的步骤,找到可逆矩阵P使得为对角矩阵。7、用正交变换法化二次型为标准形的步骤:(将实对称矩阵对角化)(1)写出二次型的矩阵.(2)求出的所有特征值(3)解方程组()求对应于特征值的特征向量(4)若特征向量
9、组不正交,则先将其正交化,再单位化,得标准正交的向量组,记,对二次型做正交变换,即得二次型的标准形8、正定二次型的定义及其判定方法常用判定二次型正定的方法:(1)定义法(2)特征值全大于零(3)顺序主子式全大于零【要求】1、掌握向量的内积、长度、夹角,正交向量组的性质,会利用施密特正交化方法化线性无关向量组为正交向量组。2、掌握方阵特征值、特征向量的概念、求法,3、了解相似矩阵的概念、掌握化对称矩阵为对角矩阵的方法。4、掌握二次型的概念、会用正交变换化二次型为标准形。5、知道正定二次型的概念及其判定方法。线性代数要注意的知识点1、行列式1. 行列式共有个元素,展开后有项,可分解为行列式;2.
10、代数余子式的性质:、和的大小无关;、某行(列)的元素乘以其它行(列)元素的代数余子式为0;、某行(列)的元素乘以该行(列)元素的代数余子式为;3. 代数余子式和余子式的关系:4. 行列式的重要公式:、主对角行列式:主对角元素的乘积;、副对角行列式:副对角元素的乘积;、上、下三角行列式():主对角元素的乘积;、和:副对角元素的乘积;、拉普拉斯展开式:、范德蒙行列式:大指标减小指标的连乘积;、特征值 5. 证明的方法:、反证法;、构造齐次方程组,证明其有非零解;、利用秩,证明;、证明0是其特征值;2、矩阵是阶可逆矩阵:(是非奇异矩阵);(是满秩矩阵)的行(列)向量组线性无关;齐次方程组有非零解;,
11、总有唯一解;与等价;可表示成若干个初等矩阵的乘积;的特征值全不为0;是正定矩阵;的行(列)向量组是的一组基;是中某两组基的过渡矩阵;6. 对于阶矩阵: 无条件恒成立;7. 矩阵是表格,推导符号为波浪号或箭头;行列式是数值,可求代数和;8. 关于分块矩阵的重要结论,其中均、可逆:若,则:3、矩阵的初等变换与线性方程组1. 一个矩阵,总可经过初等变换化为标准形,其标准形是唯一确定的:;等价类:所有与等价的矩阵组成的一个集合,称为一个等价类;标准形为其形状最简单的矩阵;对于同型矩阵、,若;2. 行最简形矩阵:、只能通过初等行变换获得;、每行首个非0元素必须为1;、每行首个非0元素所在列的其他元素必须
12、为0;3. 初等行变换的应用:(初等列变换类似,或转置后采用初等行变换)、 若,则可逆,且;、对矩阵做初等行变化,当变为时,就变成,即:;、求解线形方程组:对于个未知数个方程,如果,则可逆,且;4. 初等矩阵和对角矩阵的概念:、初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵;、,左乘矩阵,乘的各行元素;右乘,乘的各列元素; 、对调两行或两列,符号,且,例如:;、倍乘某行或某列,符号,且,例如:;、倍加某行或某列,符号,且,如:;5. 矩阵秩的基本性质:、若,则;、若、可逆,则;(可逆矩阵不影响矩阵的秩)、如果是矩阵,是矩阵,且,则:()、的列向量全部是齐次方程组解
13、(转置运算后的结论);、若、均为阶方阵,则;6. 三种特殊矩阵的方幂:、秩为1的矩阵:一定可以分解为列矩阵(向量)行矩阵(向量)的形式,再采用结合律;、型如的矩阵:利用二项展开式、利用特征值和相似对角化:7. 伴随矩阵:、伴随矩阵的秩:;、伴随矩阵的特征值:;8. 关于矩阵秩的描述:、,中有阶子式不为0,阶子式全部为0;(两句话)、,中有阶子式全部为0;、,中有阶子式不为0;9. 线性方程组:,其中为矩阵,则:、与方程的个数相同,即方程组有个方程;、与方程组得未知数个数相同,方程组为元方程;10. 线性方程组的求解:、对增广矩阵进行初等行变换(只能使用初等行变换);、齐次解为对应齐次方程组的解
14、;、特解:自由变量赋初值后求得;11. 由个未知数个方程的方程组构成元线性方程:、(向量方程,为矩阵,个方程,个未知数)、(全部按列分块,其中);、(线性表出)、有解的充要条件:(为未知数的个数或维数)4、向量组的线性相关性1. 个维列向量所组成的向量组:构成矩阵;个维行向量所组成的向量组:构成矩阵;含有有限个向量的有序向量组与矩阵一一对应;2. 、向量组的线性相关、无关有、无非零解;(齐次线性方程组)、向量的线性表出是否有解;(线性方程组)、向量组的相互线性表示是否有解;(矩阵方程)3. 矩阵与行向量组等价的充分必要条件是:齐次方程组和同解;(例14)4. ;(例15)5. 维向量线性相关的
15、几何意义:、线性相关;、线性相关坐标成比例或共线(平行);、线性相关共面;6. 线性相关与无关的两套定理:若线性相关,则必线性相关;若线性无关,则必线性无关;(向量的个数加加减减,二者为对偶)若维向量组的每个向量上添上个分量,构成维向量组:若线性无关,则也线性无关;反之若线性相关,则也线性相关;(向量组的维数加加减减)简言之:无关组延长后仍无关,反之,不确定;7. 向量组(个数为)能由向量组(个数为)线性表示,且线性无关,则;向量组能由向量组线性表示,则; 向量组能由向量组线性表示有解;向量组能由向量组等价8. 方阵可逆存在有限个初等矩阵,使;、矩阵行等价:(左乘,可逆)与同解、矩阵列等价:(
16、右乘,可逆);、矩阵等价:(、可逆);9. 对于矩阵与:、若与行等价,则与的行秩相等;、若与行等价,则与同解,且与的任何对应的列向量组具有相同的线性相关性;、矩阵的初等变换不改变矩阵的秩;、矩阵的行秩等于列秩;10. 若,则:、的列向量组能由的列向量组线性表示,为系数矩阵;、的行向量组能由的行向量组线性表示,为系数矩阵;(转置)11. 齐次方程组的解一定是的解,考试中可以直接作为定理使用,而无需证明;、只有零解只有零解;、有非零解一定存在非零解;12. 设向量组可由向量组线性表示为: 其中为,且线性无关,则组线性无关;(与的列向量组具有相同线性相关性)(必要性:;充分性:反证法)注:当时,为方
17、阵,可当作定理使用;13. 、对矩阵,存在,、的列向量线性无关; 、对矩阵,存在,、的行向量线性无关;14. 线性相关存在一组不全为0的数,使得成立;(定义)有非零解,即有非零解;,系数矩阵的秩小于未知数的个数;15. 设的矩阵的秩为,则元齐次线性方程组的解集的秩为:;16. 若为的一个解,为的一个基础解系,则线性无关; 5、相似矩阵1. 正交矩阵或(定义),性质:、的列向量都是单位向量,且两两正交,即;、若为正交矩阵,则也为正交阵,且;、若、正交阵,则也是正交阵;注意:求解单位正交阵,千万不要忘记施密特正交化和单位化;2. 施密特正交化:3. 对于普通方阵,不同特征值对应的特征向量线性无关;对于实对称阵,不同特征值对应的特征向量正交;