离散型随机变量的分布列综合试题整理(带答案).doc

上传人:豆**** 文档编号:33568117 上传时间:2022-08-11 格式:DOC 页数:17 大小:1,024KB
返回 下载 相关 举报
离散型随机变量的分布列综合试题整理(带答案).doc_第1页
第1页 / 共17页
离散型随机变量的分布列综合试题整理(带答案).doc_第2页
第2页 / 共17页
点击查看更多>>
资源描述

《离散型随机变量的分布列综合试题整理(带答案).doc》由会员分享,可在线阅读,更多相关《离散型随机变量的分布列综合试题整理(带答案).doc(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、离散型随机变量的分布列综合题1.某单位举办2010年上海世博会知识宣传活动,进行现场抽奖,盒中装有9张大小相同的精美卡片,卡片上分别印有“世博会会徽”或“海宝”(世博会吉祥物)图案;抽奖规则是:参加者从盒中抽取卡片两张,若抽到两张都是“海宝”卡即可获奖,否则,均为不获奖。卡片用后入回盒子,下一位参加者继续重复进行。 ()活动开始后,一位参加者问:盒中有几张“海宝”卡?主持人答:我只知道,从盒中抽取两张都是“世博会会徽”卡的概率是,求抽奖者获奖的概率; ()现有甲乙丙丁四人依次抽奖,用表示获奖的人数,求的分布列及的值。解:(I)设“世博会会徽”卡有n张,由得n=5,故“海宝”卡有4张,抽奖者获奖

2、的概率为5分 (II)的分布列为 01234P12分2.某运动项目设置了难度不同的甲、乙两个系列,每个系列都有K和D两个动作。比赛时每位运动员自选一个系列完成,两个动作得分之和为该运动员的成绩。假设每个运动员完成每个系列中的K和D两个动作的得分是相互独立的。根据赛前训练的统计数据,某运动员完成甲系列和乙系列中的K和D两个动作的情况如下表:表1:甲系列表2:乙系列动作K动作D动作得分100804010概率动作K动作D动作得分9050200概率现该运动员最后一个出场,之前其他运动员的最高得分为115分。(1) 若该运动员希望获得该项目的第一名,应选择哪个系列?说明理由。并求其获得第一名的概率。(2

3、) 若该运动员选择乙系列,求其成绩的分布列及数学期望解.(1)应选择甲系列,因为甲系列最高可得到140分,而乙系列最高只可得到110分,不可能得第一名。 该运动员获得第一名的概率 (2)的可能取值有50,70,90,110。 110907050P3在本次考试中共有12道选择题,每道选择题有4个选项,其中只有一个是正确的。评分标准规定:每题只选一项,答对得5分,不答或答错得0分。某考生每道题都给出一个答案。某考生已确定有9道题的答案是正确的,而其余题中,有1道题可判断出两个选项是错误的,有一道可以判断出一个选项是错误的,还有一道因不了解题意只能乱猜。试求出该考生:()选择题得60分的概率;()选

4、择题所得分数的数学期望解:(1)得分为60分,12道题必须全做对在其余的3道题中,有1道题答对的概率为,有1道题答对的概率为,还有1道答对的概率为,所以得分为60分的概率为: ,。5分(2)依题意,该考生得分的范围为45,50,55,60. ,。6分得分为45分表示只做对了9道题,其余各题都做错,所以概率为 ,。7分得分为50分的概率为: ,。8分同理求得得分为55分的概率为: ,。9分得分为60分的概率为: ,。10分所以得分的分布列为45505560数学期望。12分4某设区举办2010年上海世博会知识宣传活动,进行现场抽奖,抽奖规则是:盒中装有10张大小相同的精美卡片,卡片上分别印有“世博

5、会会徽”或“海宝”(世博会吉祥物)图案,参加者每次从盒中抽取卡片两张,若抽到两张都是“海宝”卡即可获奖。 (I)活动开始后,一位参加者问:盒中有几张“海宝”卡?主持人笑说:我只知道若从盒总抽两张都不是“海宝”卡的概率是,求抽奖者获奖的概率; ()现有甲乙丙丁四人依次抽奖,抽后放回,另一个人再抽,用表示获奖的人数,求 的分布列及。解:(I)设“世博会会徽”卡有张,由=,得(2分) 故“海宝”卡有4张,(3分)抽奖者获奖的概率为(5分)(),的分布列为或01234 (12分)5某地区举办科技创新大赛,有50件科技作品参赛,大赛组委会对这50件作品分别从“创新性”和“实用性”两项进行评分,每项评分均

6、按等级采用5分制,若设“创新性”得分为,“实用性”得分为,统计结果如下表:作品数量 实用性1分2分3分4分5分创新性1分131012分107513分210934分1605分00113()求“创新性为4分且实用性为3分”的概率;()若“实用性”得分的数学期望为,求、的值解:()从表中可以看出,“创新性为分且实用性为分”的作品数量为件,“创新性为分且实用性为分”的概率为 4分()由表可知“实用性”得分有分、分、分、分、分五个等级,且每个等级分别有件,件,件,件,件 5分“实用性”得分的分布列为:又“实用性”得分的数学期望为, 10分作品数量共有件, 解得, 13分6一个袋中装有个形状大小完全相同的

7、小球,球的编号分别为.()若从袋中每次随机抽取1个球,有放回的抽取2次,求取出的两个球编号之和为6的概率; ()若从袋中每次随机抽取个球,有放回的抽取3次,求恰有次抽到号球的概率; ()若一次从袋中随机抽取个球,记球的最大编号为,求随机变量的分布列.解:()设先后两次从袋中取出球的编号为,则两次取球的编号的一切可能结果有种, 2分其中和为的结果有,共种,则所求概率为. 4分()每次从袋中随机抽取个球,抽到编号为的球的概率.6分所以,次抽取中,恰有次抽到6号球的概率为. 8分()随机变量所有可能的取值为. 9分,. 12分所以,随机变量的分布列为:13分7甲、乙二人用4张扑克牌(分别是红桃2、红

8、桃3、红桃4、方块4)玩游戏,他们将扑克牌洗匀后,背面朝上放在桌面上,甲先抽,乙后抽,抽出的牌不放回,各抽一张。(1)设分别表示甲、乙抽到的牌的数字,写出甲、乙二人抽到的牌的所有情况(2)若甲抽到红桃3,则乙抽到的牌面数字比3大的概率是多少?(3)甲、乙约定:若甲抽到的牌的牌面数字比乙大,则甲胜;否则,乙胜。你认为此游戏是否公平?请说明你的理由.解:(1)甲、乙二人抽到的牌的所有情况为(2,3),(2,4),(2,),(3,2),(3,4),(3,),(4,2),(4,3),(4,),(,2),(,3),(,4),共12种不同情况 4分(2)甲抽到3,乙抽到的牌只能是2,4,.因此乙抽到的牌的

9、数字大于3的概率为. 8分 (3)由甲抽到的牌比乙大有(3,2),(4,2),(4,3),(,2),(,3),共5种甲获胜的概率乙获胜的概率为 此游戏不公平 .13分8某地区教研部门要对高三期中数学练习进行调研,考察试卷中某道填空题的得分情况.已知该题有两空,第一空答对得3分,答错或不答得0分;第二空答对得2分,答错或不答得0分.第一空答对与否与第二空答对与否是相互独立的.从所有试卷中随机抽取1000份试卷,其中该题的得分组成容量为1000的样本,统计结果如下表:第一空得分情况第二空得分情况得分03得分02人数198802人数698302第一空得分第二空得分得分03得分02人数198802人数

10、698302()求样本试卷中该题的平均分,并据此估计这个地区高三学生该题的平均分.BACMFED()这个地区的一名高三学生因故未参加考试,如果这名学生参加考试,以样本中各种得分情况的频率(精确到0.1)作为该同学相应的各种得分情况的概率.试求该同学这道题得分的数学期望.解:()设样本试卷中该题的平均分为,则由表中数据可得: ,.3分 据此可估计这个地区高三学生该题的平均分为3.01分. .4分()依题意,第一空答对的概率为0.8,第二空答对的概率为0.3,6分则该同学这道题得分的分布列如下:ks5u0235P014006056024所以E=00.14+20.06+30.56+50.24=3 1

11、2分9某厂生产的产品在出厂前都要做质量检测,每一件一等品都能通过检测,每一件二等品通过检测的概率为.现有10件产品,其中6件是一等品,4件是二等品.() 随机选取1件产品,求能够通过检测的概率;()随机选取3件产品,其中一等品的件数记为,求的分布列;() 随机选取3件产品,求这三件产品都不能通过检测的概率.解:()设随机选取一件产品,能够通过检测的事件为 1分事件等于事件 “选取一等品都通过检测或者是选取二等品通过检测” 2分 4分() 由题可知可能取值为0,1,2,3. ,. 8分0123 9分 ()设随机选取3件产品都不能通过检测的事件为 10分事件等于事件“随机选取3件产品都是二等品且都

12、不能通过检测”所以,. 13分10某商场进行促销活动,到商场购物消费满100元就可转动转盘(转盘为十二等分的圆盘)一次进行抽奖,满200元转两次,以此类推(奖金累加);转盘的指针落在A区域中一等奖,奖10元,落在B、C区域中二等奖,奖5元,落在其它区域则不中奖一位顾客一次购物消费268元,ABC() 求该顾客中一等奖的概率;() 记为该顾客所得的奖金数,求其分布列;() 求数学期望(精确到0.01)解() 设事件表示该顾客中一等奖 所以该顾客中一等奖的概率是 4分()的可能取值为20,15,10,5,0 5分,(每个1分)10分所以的分布列为2015105010分()数学期望14分11甲、乙、

13、丙三人参加了一家公司的招聘面试,面试合格者可正式签约,甲表示只要面试合格就签约.乙、丙则约定:两人面试都合格就一同签约,否则两人都不签约.设甲面试合格的概率为,乙、丙面试合格的概率都是,且面试是否合格互不影响()求至少有1人面试合格的概率;()求签约人数的分布列和数学期望解:()用A,B,C分别表示事件甲、乙、丙面试合格.由题意知A,B,C相互独立,且.至少有1人面试合格的概率是 ()的可能取值为0,1,2,3. = 的分布列是0123的期望12甲,乙两人进行乒乓球比赛,约定每局胜者得分,负者得分,比赛进行到有一人比对方多分或打满局时停止设甲在每局中获胜的概率为,且各局胜负相互独立已知第二局比

14、赛结束时比赛停止的概率为()求的值;()设表示比赛停止时比赛的局数,求随机变量的分布列和数学期望解:()当甲连胜2局或乙连胜2局时,第二局比赛结束时比赛停止,故,解得或又,所以 6分()依题意知的所有可能取值为2,4,6,所以随机变量的分布列为:所以的数学期望13分13甲班有2名男乒乓球选手和3名女乒乓球选手,乙班有3名男乒乓球选手和1名女乒乓球选手,学校计划从甲乙两班各选2名选手参加体育交流活动.()求选出的4名选手均为男选手的概率.()记为选出的4名选手中女选手的人数,求的分布列和期望.解:()事件表示“选出的4名选手均为男选手”.由题意知 3分. 5分()的可能取值为. 6分, 7分,

15、9分, 10分. 11分的分布列:12分. 13分14为振兴旅游业,某省2009年面向国内发行了总量为2000万张的优惠卡,其中向省外人士发行的是金卡,向省内人士发行的是银卡。某旅游公司组织了一个有36名游客的旅游团到该省旅游,其中是省外游客,其余是省内游客。在省外游客中有持金卡,在省内游客中有持银卡。(1)在该团中随机采访3名游客,求至少有1人持金卡且恰有1人持银卡的概率; (2 ) 在该团的省外游客中随机采访3名游客,设其中持金卡人数为随机变量X,求X的分布列及数学期望EX。.解:(1)由题意知,省外游客有27人,其中9人持有金卡,省内游客有9人,其中6人持有银卡。 记事件B为“采访该团3

16、人中,至少有1人持金卡且恰有1人持银卡,” 记事件为“采访该团3人中,1人持金卡,1人持银卡,” 记事件为“采访该团3人中,2人持金卡,1人持银卡,” 则 所以在该团中随机采访3名游客,至少有1人持金卡且恰有1人持银卡的概率为。 .6分 (2)X的可能取值为0,1,2,3 因为, , 所以X的分布列为X0123P 10分 故 13分HCA1A2B1B2L1L2A315张先生家住H小区,他工作在C科技园区,从家开车到公司上班路上有L1,L2两条路线(如图),L1路线上有A1,A2,A3三个路口,各路口遇到红灯的概率均为;L2路线上有B1,B2两个路口,各路口遇到红灯的概率依次为,()若走L1路线

17、,求最多遇到1次红灯的概率;()若走L2路线,求遇到红灯次数的数学期望;()按照“平均遇到红灯次数最少”的要求,请你帮助张先生从上述两条路线中选择一条最好的上班路线,并说明理由解:()设走L1路线最多遇到1次红灯为A事件,则 4分所以走L1路线,最多遇到1次红灯的概率为()依题意,的可能取值为0,1,2 5分, , 8分随机变量的分布列为:012P 10分()设选择L1路线遇到红灯次数为,随机变量服从二项分布,所以 12分因为,所以选择L2路线上班最好 14分16在某次抽奖活动中,一个口袋里装有5个白球和5个黑球,所有球除颜色外无任何不同,每次从中摸出2个球,观察颜色后放回,若为同色,则中奖。

18、()求仅一次摸球中奖的概率;()求连续2次摸球,恰有一次不中奖的概率;()记连续3次摸球中奖的次数为,求的分布列。解:()设仅一次摸球中奖的概率为P1,则P1=3分()设连续2次摸球(每次摸后放回),恰有一次不中奖的概率为P2,则P2= 7分()的取值可以是0,1,2,3=(1-)3=,=,= =,=所以的分布列如下表0123P 13分17在一次考试中共有8道选择题,每道选择题都有4个选项,其中有且只有一个选项是正确的.某考生有4道题已选对正确答案,其余题中有两道只能分别判断2个选项是错误的,还有两道题因不理解题意只好乱猜.() 求该考生8道题全答对的概率;() 若评分标准规定:“每题只选一个

19、选项,选对得5分,不选或选错得0分”,求该考生所得分数的分布列. 解:()说明另四道题也全答对,相互独立事件同时发生,即:5分()答对题的个数为4,5,6,7,8,其概率分别为: 2025303540分布列为: 13分18为保护水资源,宣传节约用水,某校4名志愿者准备去附近的甲、乙、丙三家公园进行宣传活动,每名志愿者都可以从三家公园中随机选择一家,且每人的选择相互独立.()求4人恰好选择了同一家公园的概率;()设选择甲公园的志愿者的人数为,试求的分布列及期望解:()设“4人恰好选择了同一家公园”为事件A. 1分每名志愿者都有3种选择,4名志愿者的选择共有种等可能的情况. 2分事件A所包含的等可

20、能事件的个数为3, 3分所以,. 即:4人恰好选择了同一家公园的概率为. 5分()设“一名志愿者选择甲公园”为事件C,则.6分4人中选择甲公园的人数可看作4次独立重复试验中事件C发生的次数,因此,随机变量服从二项分布.可取的值为0,1,2,3,4. 8分, .10分的分布列为:01234.12分的期望为 .13分19某学校高一年级开设了五门选修课为了培养学生的兴趣爱好,要求每个学生必须参加且只能选修一门课程假设某班甲、乙、丙三名学生对这五门课程的选择是等可能的()求甲、乙、丙三名学生参加五门选修课的所有选法种数;()求甲、乙、丙三名学生中至少有两名学生选修同一门课程的概率;()设随机变量为甲、

21、乙、丙这三名学生参加课程的人数,求的分布列与数学期望解:()甲、乙、丙三名学生每人选择五门选修课的方法数是5种,故共有(种)()三名学生选择三门不同选修课程的概率为: 三名学生中至少有两人选修同一门课程的概率为:()由题意:; ; 的分布列为数学期望=- 13分20某汽车驾驶学校在学员结业前对其驾驶技术进行4次考核,规定:按顺序考核,一旦考核合格就不必参加以后的考核,否则还需参加下次考核,若小张参加每次考核合格的概率依次组成一个公差为的等差数列,他参加第一次考核合格的概率超过,且他直到参加第二次考核才合格的概率为 (I)求小张第一次参加考核就合格的概率P1; ()求小张参加考核的次数和分布列和数学期望值解:(I)由题意得 4分 (II)由(I)知小张4次考核每次合格的概率依次为,所以所以的分布列为1234P12分21已知条桥梁横跨A、两岸,假设各条桥梁的车流量分别为、(单位:万量),现从这条桥梁中任取三条桥梁,考察这三条桥梁的车流量之和()求的概率;()求的数学期望解:()由等可能事件得5分()由已知得分布列如下:10分故

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 高考资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁