《培优专题3_等腰三角形(含答案)[1].doc》由会员分享,可在线阅读,更多相关《培优专题3_等腰三角形(含答案)[1].doc(8页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、如有侵权,请联系网站删除,仅供学习与交流培优专题3_等腰三角形(含答案)1【精品文档】第 8 页3等腰三角形【知识精读】()等腰三角形的性质 1. 有关定理及其推论 定理:等腰三角形有两边相等; 定理:等腰三角形的两个底角相等(简写成“等边对等角”)。 推论1:等腰三角形顶角的平分线平分底边并且垂直于底边,这就是说,等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。等腰三角形是以底边的垂直平分线为对称轴的轴对称图形;推论2:等边三角形的各角都相等,并且每一个角都等于60。 2. 定理及其推论的作用 等腰三角形的性质定理揭示了三角形中边相等与角相等之间的关系,由两边相等推出两角相等,是今
2、后证明两角相等常用的依据之一。等腰三角形底边上的中线、底边上的高、顶角的平分线“三线合一”的性质是今后证明两条线段相等,两个角相等以及两条直线互相垂直的重要依据。(二)等腰三角形的判定 1. 有关的定理及其推论 定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”。) 推论1:三个角都相等的三角形是等边三角形。 推论2:有一个角等于60的等腰三角形是等边三角形。 推论3:在直角三角形中,如果一个锐角等于30,那么它所对的直角边等于斜边的一半。 2. 定理及其推论的作用。 等腰三角形的判定定理揭示了三角形中角与边的转化关系,它是证明线段相等的重要定理,也是把三角形中
3、角的相等关系转化为边的相等关系的重要依据,是本节的重点。 3. 等腰三角形中常用的辅助线等腰三角形顶角平分线、底边上的高、底边上的中线常常作为解决有关等腰三角形问题的辅助线,由于这条线可以把顶角和底边折半,所以常通过它来证明线段或角的倍分问题,在等腰三角形中,虽然顶角的平分线、底边上的高、底边上的中线互相重合,添加辅助线时,有时作哪条线都可以,有时需要作顶角的平分线,有时则需要作高或中线,这要视具体情况来定。【分类解析】 例1. 如图,已知在等边三角形ABC中,D是AC的中点,E为BC延长线上一点,且CECD,DMBC,垂足为M。求证:M是BE的中点。 分析:欲证M是BE的中点,已知DMBC,
4、所以想到连结BD,证BDED。因为ABC是等边三角形,DBEABC,而由CECD,又可证EACB,所以1E,从而问题得证。 证明:因为三角形ABC是等边三角形,D是AC的中点 所以1ABC 又因为CECD,所以CDEE 所以ACB2E 即1E 所以BDBE,又DMBC,垂足为M 所以M是BE的中点 (等腰三角形三线合一定理)例2. 如图,已知:中,D是BC上一点,且,求的度数。 分析:题中所要求的在中,但仅靠是无法求出来的。因此需要考虑和在题目中的作用。此时图形中三个等腰三角形,构成了内外角的关系。因此可利用等腰三角形的性质和三角形的内外角关系定理来求。 解:因为,所以 因为,所以; 因为,所
5、以(等边对等角) 而 所以 所以 又因为 即 所以 即求得 说明1. 等腰三角形的性质是沟通本题中角之间关系的重要桥梁。把边的关系转化成角的关系是此等腰三角形性质的本质所在。本条性质在解题中发挥着重要的作用,这一点在后边的解题中将进一步体现。 2. 注意“等边对等角”是对同一个三角形而言的。 3. 此题是利用方程思想解几何计算题,而边证边算又是解决这类题目的常用方法。 例3. 已知:如图,中,于D。求证:。 分析:欲证角之间的倍半关系,结合题意,观察图形,是等腰三角形的顶角,于是想到构造它的一半,再证与的关系。 证明:过点A作于E, 所以(等腰三角形的三线合一性质) 因为 又,所以 所以(直角
6、三角形两锐角互余) 所以(同角的余角相等) 即 说明: 1. 作等腰三角形底边高线的目的是利用等腰三角形的三线合一性质,构造角的倍半关系。因此添加底边的高是一条常用的辅助线; 2. 对线段之间的倍半关系,常采用“截长补短”或“倍长中线”等辅助线的添加方法,对角间的倍半关系也同理,或构造“半”,或构造“倍”。因此,本题还可以有其它的证法,如构造出的等角等。4、中考题型: 1.如图,ABC中,ABAC,A36,BD、CE分别为ABC与ACB的角平分线,且相交于点F,则图中的等腰三角形有( ) A. 6个 B. 7个 C. 8个 D. 9个 分析:由已知条件根据等腰三角形的性质和三角形内角和的度数可
7、求得等腰三角形有8个,故选择C。 2.)已知:如图,在ABC中,ABAC,D是BC的中点,DEAB,DFAC,E、F分别是垂足。求证:AEAF。 证明:因为,所以 又因为 所以 又D是BC的中点,所以 所以 所以,所以 说明:证法二:连结AD,通过 证明即可5、题形展示: 例1. 如图,中,BD平分。求证:。 分析一:从要证明的结论出发,在BC上截取,只需证明,考虑到,想到在BC上截取,连结DE,易得,则有,只需证明,这就要从条件出发,通过角度计算可以得出。 证明一:在BC上截取,连结DE、DF 在和中, 又 而 即分析二:如图,可以考虑延长BD到E,使DEAD,这样BDAD=BD+DE=BE
8、,只需证明BEBC,由于,只需证明易证,故作的角平分线,则有,进而证明,从而可证出。 证明二:延长BD到E,使DEAD,连结CE,作DF平分交BC于F。 由证明一知: 则有 DF平分 ,在和中 ,而 在和中, 在中, 说明:“一题多证”在几何证明中经常遇到,它是培养思维能力提高解题水平的有效途径,读者在以后的几何学习中要善于从不同角度去思考、去体会,进一步提高自身的解题能力。【实战模拟】 1. 选择题:等腰三角形底边长为5cm,一腰上的中线把其周长分为两部分的差为3cm,则腰长为( ) A. 2cmB. 8cmC. 2cm或8cmD. 以上都不对 2. 如图,是等边三角形,则的度数是_。3.
9、求证:等腰三角形两腰中线的交点在底边的垂直平分线上. 4. 中,AB的中垂线交AB于D,交CA延长线于E,求证:。【试题答案】 1. B 2. 分析:结合三角形内角和定理,计算图形中角的度数是等边三角形性质的重要应用。 解:因为是等边三角形 所以 因为,所以 所以 在中,因为 所以,所以 所以 3. 分析:首先将文字语言翻译成数学的符号语言和图形语言。已知:如图,在中,D、E分别为AC、AB边中点,BD、CE交于O点。求证:点O在BC的垂直平分线上。 分析:欲证本题结论,实际上就是证明。而OB、OC在中,于是想到利用等腰三角形的判定角等,那么问题就转化为证含有的两个三角形全等。证明:因为在中,
10、所以(等边对等角)又因为D、E分别为AC、AB的中点,所以(中线定义)在和 中,所以所以(全等三角形对应角相等)。所以(等角对等边)。即点O在BC的垂直平分线上。说明:(1)正确地理解题意,并正确地翻译成几何符号语言是非常重要的一步。特别是把“在底边的垂直平分线上”正确地理解成“OBOC”是关键的一点。(2)实际上,本题也可改成开放题:“ABC中,ABAC,D、E分别为AC、AB上的中点,BD、CE交于O。连结AO后,试判断AO与BC的关系,并证明你的结论”其解决方法是和此题解法差不多的。4. 分析:此题没有给出图形,那么依题意,应先画出图形。题目中是求线段的倍半关系,观察图形,考虑取BC的中点。证明:过点A作BC边的垂线AF,垂足为F。31在中,所以 所以(等腰三角形三线合一性质)。所以(邻补角定义)。所以又因为ED垂直平分AB,所以(直角三角形两锐角互余)。(线段垂直平分线定义)。又因为(直角三角形中 角所对的边等于斜边的一半)。所以在和中,所以所以即。说明:(1)根据题意,先准确地画出图形,是解几何题的一项基本功;(2)直角三角形中角的特殊关系,沟通了边之间的数量关系,为顺利证明打通了思路。