《人教A版(2019)高中数学必修第一册1.4.2充要条件教案.docx》由会员分享,可在线阅读,更多相关《人教A版(2019)高中数学必修第一册1.4.2充要条件教案.docx(4页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、1.4.2 充要条件教学目标:1.理解充要条件的意义,达到数学抽象核心素养水平一的要求.2.结合具体命题掌握命题的条件的充要性的判定及证明方法,达到逻辑推理核心素养水平一的要求.3. 能根据给出的充要条件求相关的参数的值或范围. 教学重点:充分理解充要条件的概念.教学难点:命题条件的充要性判断.教学过程:(一)新课导入上节课我们学习了命题的充分条件和必要条件,在学习充要条件之前先复习一下上节课所学的内容,“如果p可以推出q,那p是什么条件,q又是什么条件?”老师引导学生回答.接下来我们看一道题:已知p:x2-x-6=0;q:x=3或x=-2.请判断:p是q的充分条件吗?p是q的必要条件吗?解答
2、这道题前,我们先来回想一下“若p,则q”是哪种命题形式?“若q,则p” 是哪种命题形式?老师引导学生发言,并总结( “若p,则q” 为原命题, “若q,则p”为原命题的逆命题).(二)探索新知思考请判断下列“若p,则q”形式的命题的真假,写出它们的逆命题并判断逆命题的真假.(1)若两个三角形的两角和其中一角所对的边分别相等,则这两个三角形全等.(2)若两个三角形全等,则这两个三角形的周长相等.(3)若一元二次方程ax2+bx+c=0有两个不相等的实数根,则ac0.(4)若AUB是空集,则A与B均是空集.我们写出逆命题之后,不难发现,上述命题中命题(1)(4)和它们的逆命题都是真命题;命题(2)
3、是真命题,但它的逆命题是假命题;命題(3)是假命题,但它的逆命题是真命题.思考:如果p是q的充要条件,那么q也是p的充要条件吗?老师给出定义:如果“若p,则q” 是真命题,则记作qp.如果它的逆命题“若q,则p”是真命题,则记作pq.此时,p既是q的充分条件,也是q的必要条件,我们说p是q的充分必要条件,简称为充要条件. 记作pq.显然,如果p是q的充要条件,那么q也是p的充要条件.如果pq,那么p与q互为充要条件.探究一:下列各题中,哪些p是q的充要条件?(1)p:四边形是正方形,q:四边形的对角线互相垂直且平分;(2)p:两个三角形相似,q:两个三角形三边成比例;(3)p:xy0,q:x0
4、,y0;(4)p:x=1是一元二次方程ax2+bx+c=0的一个根,q:a+b+c=0(a0).解:(1)因为对角线互相垂直且平分的四边形不一定是正方形(也可能是菱形),所以qp,所以p不是q的充要条件.(2)因为“若p,则q”是相似三角形的性质定理,“若q,则p”是相似三角形的判定定理,所以它们均为真命题,即pq,所以p是q的充要条件.(3)因为xy0时,x0, y0不一定成立(因为xy0时,也可能x0,y0),所以pq,所以p不是q的充要条件.(4)因为“若p,则q” 与“若q,则p”均为真命题,即pq,所以p是q的充要条件.探究二:通过上面的学习,你能给出“四边形是平行四边形”的充要条件
5、吗?(1)两组对边分别平行;(2)两组对角分别相等;(3)两组对边分别相等;(4)一组对边平行且相等;(5)对角线互相平分. 上面这些充要条件从不同角度刻画了“平行四边形”这个概念,由此我们可以给出平行四边形的其他定义形式.例如:一组对边平行且相等的四边形叫做平行四边形;对角线互相平分的四边形叫做平行四边形.类似地,利用“两个三角形全等”的充要条件,可以给出“三角形全等”的其他定义形式(SSS、SAS、AAS、ASA、HL),这些定义相互等价,等等.(三)课堂练习1.已知,则p是 q的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案:C解析:等价于解得,所以p
6、是q的充要条件2.设集合,“”是“”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件答案:A解析:当a=1时,N=1,此时有,则条件具有充x分性;当时,有a2=1或a2=2,得到a1=1,a2=1,a3=, a4=,故不具有必要性,所以“a=1”是“”的充分不必要条件.故选A.3.已知,“”是“”的_条件.答案:充要解析:当时,所以由能推出,当时,若时,成立,若时,式子没有意义,若时,所以有.因此由能推出.“”是“”的充要条件.故答案为:充要4.设为全集, 是集合,则“存在集合使得 , ”是“”的( )A.充分而不必要的条件B.必要而不充分的条件C.充要条件D.既不充分也不必要的条件答案:C解析:结合Venn图判断是否成立;再反过来判断是否成立,最后下结论.若存在集合使得AC,BUC,则可以推出AB=;若AB=,由Venn图(如图)可知,存在A=C,同时满足AC,BUC.故“存在集合C使得AC,BUC”是“AB=”的充要条件.(四)小结作业小结:1.本节课我们主要学习了哪些内容?2.充要条件的定义;3.命题条件的充要性的判定及证明方法;板书设计:1. 充要条件的定义2.充要条件的证明.p既是q的充分条件,又是q的必要条件,我们就说p是q的充要条件.