《七年级数学上册整式计算题专项练习(含答案).doc》由会员分享,可在线阅读,更多相关《七年级数学上册整式计算题专项练习(含答案).doc(7页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、如有侵权,请联系网站删除,仅供学习与交流七年级数学上册整式计算题专项练习(含答案)【精品文档】第 7 页整式的乘除计算训练(1)1. 2. (x+2)(y+3)-(x+1)(y-2)3. 4. x(x2)(x+5)(x5)5. 6. 7. 8. 9. (x3y)(x+3y)(x3y)2 10. 11. 12. 13. 0.1251008100 14. 15. (1619题用乘法公式计算16.9991001 17.18. 19.20.化简求值:,其中。21. 化简求值,其中。22. 5(x1)(x+3)2(x5)(x2) 23. (ab)(a2+ab+b2)24. (3y+2)(y4)3(y2)
2、(y3) 25. a(bc)+b(ca)+c(ab) 26. (2mn2)24mn3(mn+1) 27. 3xy(2x)3(y2)228. (x2)(x+2) 29. 5108(3102)30. (x3y)(x+3y)(x3y)2 31. (a+bc)(abc)答案1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 原式=(1000-1)(1000+1) 17. 原式=(99+1)(99-1) =1000000-1 =10098 =999999 =980018. 原式=(900-2)2 19. 原式=20092-(2009+1)(200
3、9-1) =10000-400+4 =20092-20092+1 =9604 =120.原式= ,当时,原式=21.原式=,当,时,原式=22. 23. 24. 25. 0 26. 27. 28. 29. 30. 31. 2014年北师大七年级数学上册整式及其加减计算题专项练习一一解答题(共12小题)1计算题12(8)+(7)15; 12+2(5)(3)3;(2x3y)+(5x+4y); (5a2+2a1)4(38a+2a2)2(1)计算:4+(2)22(36)4; (2)化简:3(3a2b)2(a3b)3计算:(1)7x+4(x22)2(2x2x+3); (2)4ab3b2(a2+b2)(a
4、2b2);(3)(3mn5m2)(3m25mn); (4)2a+2(a+1)3(a1)4化简(1)2(2a2+9b)+3(5a24b) (2)3(x3+2x21)(3x3+4x22)5(2009柳州)先化简,再求值:3(x1)(x5),其中x=26已知x=5,y=3,求代数式3(x+y)+4(x+y)6(x+y)的值7已知A=x23y2,B=x2y2,求解2AB8若已知M=x2+3x5,N=3x2+5,并且6M=2N4,求x9已知A=5a22ab,B=4a2+4ab,求:(1)A+B;(2)2AB;(3)先化简,再求值:3(A+B)2(2AB),其中A=2,B=110设a=14x6,b=7x+
5、3,c=21x1(1)求a(bc)的值;(2)当x=时,求a(bc)的值11化简求值:已知a、b满足:|a2|+(b+1)2=0,求代数式2(2a3b)(a4b)+2(3a+2b)的值12已知(x+1)2+|y1|=0,求2(xy5xy2)(3xy2xy)的值2014年北师大七年级数学上册整式及其加减计算题专项练习一参考答案与试题解析一解答题(共12小题)1计算题12(8)+(7)15; 12+2(5)(3)3;(2x3y)+(5x+4y); (5a2+2a1)4(38a+2a2)考点:整式的加减;有理数的混合运算菁优网版权所有专题:计算题分析:(1)直接进行有理数的加减即可得出答案(2)先进
6、行幂的运算,然后根据先乘除后加减的法则进行计算(3)先去括号,然后合并同类项即可得出结果(4)先去括号,然后合并同类项即可得出结果解答:解:原式=12+8715=2;原式=110+27=11+81=70;原式=2x3y+5x+4y=7x+y;原式=5a2+2a112+32a8a2=3a2+34a13点评:本题考查了整式的加减及有理数的混合运算,属于基础题,解答本题的关键熟记去括号法则,熟练运用合并同类项的法则,这是各地中考的常考点2(1)计算:4+(2)22(36)4;(2)化简:3(3a2b)2(a3b)考点:整式的加减;有理数的混合运算菁优网版权所有分析:(1)按照有理数混合运算的顺序,先
7、乘方后乘除最后算加减;(2)运用整式的加减运算顺序计算:先去括号,再合并同类项解答:解:(1)原式=4+42(9)=4+8+9=17;(2)原式=9a6b2a+6b=(92)a+(6+6)b=7a点评:在混合运算中要特别注意运算顺序:先三级,后二级,再一级;熟记去括号法则:得+,+得,+得+,+得;及熟练运用合并同类项的法则:字母和字母的指数不变,只把系数相加减3计算:(1)7x+4(x22)2(2x2x+3);(2)4ab3b2(a2+b2)(a2b2);(3)(3mn5m2)(3m25mn);(4)2a+2(a+1)3(a1)考点:整式的加减菁优网版权所有分析:(1)先去括号,再合并同类项
8、即可;(2)先去括号,再合并同类项即可;(3)先去括号,再合并同类项即可;(4)先去括号,再合并同类项即可解答:解:(1)7x+4(x22)2(2x2x+3)=7x+4x284x2+2x6=9x14;(2)4ab3b2(a2+b2)(a2b2)=4ab3b2a2+b2a2+b2=4ab3b22b2=4ab5b2;(3)(3mn5m2)(3m25mn)=3mn5m23m2+5mn=8mn8m2;(4)2a+2(a+1)3(a1)=2a+2a+23a+3=a+5点评:本题考查了整式的加减,解决此类题目的关键是熟记去括号法则,熟练运用合并同类项的法则,这是各地中考的常考点4化简(1)2(2a2+9b
9、)+3(5a24b)(2)3(x3+2x21)(3x3+4x22)考点:整式的加减菁优网版权所有专题:计算题分析:(1)原式利用去括号法则去括号后,合并同类项即可得到结果;(2)原式利用去括号法则去括号后,合并同类项即可得到结果解答:解:(1)原式=4a2+18b15a212b=11a2+6b;(2)原式=3x3+6x233x34x2+2=2x21点评:此题考查了整式的加减,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解本题的关键5(2009柳州)先化简,再求值:3(x1)(x5),其中x=2考点:整式的加减化简求值菁优网版权所有分析:本题应对方程去括号,合并同类项,将整式化为
10、最简式,然后把x的值代入即可解答:解:原式=3x3x+5=2x+2,当x=2时,原式=22+2=6点评:本题考查了整式的化简整式的加减运算实际上就是去括号、合并同类项,这是各地中考的常考点6已知x=5,y=3,求代数式3(x+y)+4(x+y)6(x+y)的值考点:整式的加减化简求值菁优网版权所有分析:先把x+y当作一个整体来合并同类项,再代入求出即可解答:解:x=5,y=3,3(x+y)+4(x+y)6(x+y)=x+y=5+3=8点评:本题考查了整式的加减的应用,主要考查学生的计算能力,用了整体思想7已知A=x23y2,B=x2y2,求解2AB考点:整式的加减菁优网版权所有分析:直接把A、
11、B代入式子,进一步去括号,合并得出答案即可解答:解:2AB=2(x23y2)(x2y2)=2x26y2x2+y2=x25y2点评:此题考查整式的加减混合运算,掌握去括号法则和运算的方法是解决问题的关键8若已知M=x2+3x5,N=3x2+5,并且6M=2N4,求x考点:整式的加减;解一元一次方程菁优网版权所有专题:计算题分析:把M与N代入计算即可求出x的值解答:解:M=x2+3x5,N=3x2+5,代入得:6x2+18x30=6x2+104,解得:x=2点评:此题考查了整式的加减,熟练掌握运算法则是解本题的关键9已知A=5a22ab,B=4a2+4ab,求:(1)A+B;(2)2AB;(3)先
12、化简,再求值:3(A+B)2(2AB),其中A=2,B=1考点:整式的加减;整式的加减化简求值菁优网版权所有专题:计算题分析:(1)把A与B代入A+B中计算即可得到结果;(2)把A与B代入2AB中计算即可得到结果;(3)原式去括号合并得到最简结果,把A与B的值代入计算即可求出值解答:解:(1)A=5a22ab,B=4a2+4ab,A+B=5a22ab4a2+4ab=a2+2ab;(2)A=5a22ab,B=4a2+4ab,2AB=10a24ab+4a24ab=14a28ab;(3)原式=3A+3B4A+2B=A+5B,把A=2,B=1代入得:原式=2+5=7点评:此题考查了整式的加减,熟练掌握
13、运算法则是解本题的关键10设a=14x6,b=7x+3,c=21x1(1)求a(bc)的值;(2)当x=时,求a(bc)的值考点:整式的加减;代数式求值菁优网版权所有专题:计算题分析:(1)把a,b,c代入a(bc)中计算即可得到结果;(2)把x的值代入(1)的结果计算即可得到结果解答:解:(1)把a=14x6,b=7x+3,c=21x1代入得:a(bc)=ab+c=14x6+7x3+21x1=42x10;(2)把x=代入得:原式=4210=10.510=0.5点评:此题考查了整式的加减,以及代数式求值,熟练掌握运算法则是解本题的关键11化简求值:已知a、b满足:|a2|+(b+1)2=0,求
14、代数式2(2a3b)(a4b)+2(3a+2b)的值考点:整式的加减化简求值;非负数的性质:绝对值;非负数的性质:偶次方菁优网版权所有专题:计算题分析:原式去括号合并得到最简结果,利用非负数的性质求出a与b的值,代入计算即可求出值解答:解:原式=4a6ba+4b6a+4b=3a+2b,|a2|+(b+1)2=0,a=2,b=1,则原式=62=8点评:此题考查了整式的加减化简求值,熟练掌握运算法则是解本题的关键12已知(x+1)2+|y1|=0,求2(xy5xy2)(3xy2xy)的值考点:整式的加减化简求值;非负数的性质:绝对值;非负数的性质:偶次方菁优网版权所有分析:因为平方与绝对值都是非负数,且(x+1)2+|y1|=0,所以x+1=0,y1=0,解得x,y的值再运用整式的加减运算,去括号、合并同类项,然后代入求值即可解答:解:2(xy5xy2)(3xy2xy)=(2xy10xy2)(3xy2xy)=2xy10xy23xy2+xy=(2xy+xy)+(3xy210xy2)=3xy13xy2,(x+1)2+|y1|=0(x+1)=0,y1=0x=1,y=1当x=1,y=1时,3xy13xy2=3(1)113(1)12=3+13=10答:2(xy5xy2)(3xy2xy)的值为10点评:整式的加减运算实际上就是去括号、合并同类项,这是各地中考的常考点代入求值时要化简