等腰直角三角形中的常用模型.doc

上传人:豆**** 文档编号:33475804 上传时间:2022-08-11 格式:DOC 页数:2 大小:122.50KB
返回 下载 相关 举报
等腰直角三角形中的常用模型.doc_第1页
第1页 / 共2页
等腰直角三角形中的常用模型.doc_第2页
第2页 / 共2页
亲,该文档总共2页,全部预览完了,如果喜欢就下载吧!
资源描述

《等腰直角三角形中的常用模型.doc》由会员分享,可在线阅读,更多相关《等腰直角三角形中的常用模型.doc(2页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、精品文档,仅供学习与交流,如有侵权请联系网站删除等腰直角三角形中的常用模型模型一:一条直线(不与三角形的边重合)过等腰直角三角形的直角顶点(1)以原等腰直角三角形的两直角边为对应斜边,必定可以构造一对全等的直角三角形:例1如图:RtABC中,BAC=90,AB=AC,点D是BC上任意一点,过B作BEAD于点E,过C作CFAD于点F。(1)求证:BE-CF=EF;(2)若D在BC的延长线上(如图(2),(1)中的结论还成立吗?若不成立,请写出新的结论并证明。1.如图1,等腰RtABC中,AB=CB,ABC=90,点P在线段BC上(不与B、C重合),以AP为腰长作等腰直角PAQ,QEAB于,连CQ

2、交AB于M。(1)求证:M为BE的中点(2)若PC=2PB,求的值(2)以原等腰直角三角形的两直角边为对应直角边,必定可以构造一对全等的直角三角形:3、如图:RtABC中,BAC=90,AB=AC,点D是BC上任意一点,过B作BEAD于点E,交AC于点G,过C作CFAC交AD的延长线与于点F。(1)求证:BG=AF;(2)若D在BC的延长线上(如图(2),(1)中的结论还成立吗?若不成立,请写出新的结论并证明。变式1:如图,在RABC中,ACB=45,BAC=90,AB=AC,点D是AB的中点,AFCD于H交BC于F,BEAC交AF的延长线于E,求证:BC垂直且平分DE. 变式2:等腰RtAB

3、C中,AC=AB,BAC90,点D是AC的中点,AFBD于点E,交BC于点F,连接DF,求证:1=2。变式3:等腰RtABC中,AC=AB,BAC90,点D、E是AC上两点且AD=CE,AFBD于点G,交BC于点F连接DF,求证:1=2。模型二:等腰直角三角形与另一个直角三角形共斜边等腰直角三角形与另一个直角三角形有公共斜边,一定可以以两腰为对应边构造全等三角形例1:等腰RtABC中,AC=AB,BAC90,E是AC上一点,过C作CDBE于D,连接AD,求证:ADB45。变式1:等腰RtABC中,AC=AB,BAC90,E是AC上一点,点D为BE延长线上一点,且ADC135求证:BDDC。变式

4、2:等腰RtABC中,AC=AB,BAC90,BE平分ABC交AC于E,过C作CDBE于D,DMAB交BA的延长线于点M,(1)求的值;(2)求的值。模型三:两个等腰直角三角形共一个顶点(1)两个等腰直角三角形共直角顶点,必定含一对全等三角形:例1、如图1,ABC、BEF都是等腰直角三角形,ABC=BEF=90,连接AF、CF,M是AF的中点,连ME,将BEF绕点B旋转。猜想CF与EM的数量关系并证明;(2)两个等腰直角三角形共锐角顶点且直角开口方向相反,必定可利用平移构造含一对全等三角形:如图,ABC和EBD都是等腰直角三角形,BAC=BED=90。把DE平移到CF,使E与C重合,连接AE、

5、AF,则AEB与AFC全等(关键是利用平行证明ABE=ACF)例.如图:两个直角三角形ABC、ADE的顶点A重合,P是线段BD的中点,连PC、PE。(1)如图1,若BAC=DAE=45,当A、C、D在同一直线上时,线段PC、PE的关系是 ;(2)如图2、3,将BAC绕A旋转度,(1)中的结论是否仍然成立?任意选择一个证明你的结论。三【巩固练习】1已知:RtABC中,AB=AC,BAC=90,若O是BC的中点,以O为顶点作MON,交AB、AC于点M、N。(1)若MON=90(如图1),求证:OM=ON; (2)若MON=45(如图2),求证:AM+MN=CN;2、如图,在平面直角坐标系中,AOB

6、为等腰直角三角形,A(4,4)。(1) 若C为x轴正半轴上一动点,以AC为直角边作等腰直角ACD,ACD=90,连OD,求AOD的度数;(2) 过A作y轴的垂线交y轴于E,F为x轴负半轴上一点,G在EF的延长线上,以EG为直角边作等腰RtEGH,过A作x轴垂线交EH于点M,连FM,等式是否成立?若成立,请证明;若不成立,说明理由。3.在ABC和DCE中,AB=AC,DC=DE,BAC=EDC=90,点E在AB上,连AD,DFAC于点F。试探索AE、AF、AC的数量关系;并求出DAC的度数。4如图:等腰RtABC和等腰RtEDB,AC=BC,DE=BD,ACBEDB90,E为AB是一点,P为AE

7、的中点。连接PC,PD;则PC,PD的位置关系是 ;数量关系是 ;并证明你的结论。当E在线段AB上变化时,其它条件不变,作EFBC于F,连接PF,试判断PCF的形状;在点E运动过程中,PCF是否可为等边三角形?若可以,试求ACB与EDB的两直角边之比。6.已知两个共一个顶点的等腰RtABC,RtCEF,ABC=CEF=90,连接AF,M是AF的中点,连接MB、ME(1)如图1,当CB与CE在同一直线上时,求证:MBCF;(2)如图1,若CB=a,CE=2a,求BM,ME的长;(3)如图2,当BCE=45时,求证:BM=ME7、如图,在平面直角坐标系中,A (4,0),B (0,4)。点N为OA上一点,OMBN于M,且ONB=45+MON。(1) 求证:BN平分OBA;(2) 求的值;(3) 若点P为第四象限内一动点,且APO=135,问AP与BP是否存在某种确定的位置关系?请证明你的结论。【精品文档】第 2 页

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 小学资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁