实验五--图像复原.doc

上传人:豆**** 文档编号:33466937 上传时间:2022-08-11 格式:DOC 页数:6 大小:328.50KB
返回 下载 相关 举报
实验五--图像复原.doc_第1页
第1页 / 共6页
实验五--图像复原.doc_第2页
第2页 / 共6页
点击查看更多>>
资源描述

《实验五--图像复原.doc》由会员分享,可在线阅读,更多相关《实验五--图像复原.doc(6页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、精品文档,仅供学习与交流,如有侵权请联系网站删除 信息工程学院实验报告成 绩:指导老师(签名):课程名称:数字图像处理 实验项目名称:实验五 图像复原 实验时间:2016.12.02 班级: 姓名: 学号: 一、实验目的1.了解图像退化/复原处理的模型; 2. 掌握图像复原的原理及实现方法;3. 通过本实验掌握利用MATLAB编程实现图像的恢复。4. 掌握matlab代码的调试方法,熟悉常见代码错误及改正方法。二、实验步骤及结果分析MATLAB图像处理工具箱包含四个图像复原函数,请参照教材第126页例6.8编程实现图像复原。1用点扩散(PSF)函数创建运动模糊图像,修改参数改变模糊程度。a)

2、无噪声运动模糊图像b) 有噪声运动模糊图像程序代码:【精品文档】第 6 页I=imread(cameraman.tif); %读取图像subplot(1,3,1);imshow(I,);%显示图像title(原始图像);PSF=fspecial(motion,25,11); %运动模糊函数,运动位移是25像素,角度是11Blurred=imfilter(I,PSF,conv,circular); %对图像运动模糊处理subplot(1,3,2);imshow(Blurred,);title(无噪声运动模糊图像); %显示无噪声运动模糊图像Noise=0.05*randn(size(I); %正

3、态分布的随机噪声BlurredNoisy=imadd(Blurred,im2uint8(Noise);%对退化后的图像附加噪声subplot(1,3,3);imshow(BlurredNoisy,);title(有噪声运动模糊图像); %显示运动模糊且加噪声后图像执行结果:图1 无噪声和有噪声的运动模糊图像实验结果分析:采用仿真的方法对清晰的图像加以运动模糊,形成模糊的图像。用这种模型来描述由于目标或摄像头运动,而导致的图像模糊。 同时在加入正态分布的随机噪声图像显得更加灰暗。2用维纳滤波复原函数deconvwnr 对模糊图像进行复原重建。a) 对无噪声运动模糊图像用deconvwnr(I,P

4、SF)进行复原;程序代码:I=imread(cameraman.tif); %读取图像subplot(1,3,1);imshow(I,); %显示图像title(原始图像); PSF=fspecial(motion,25,11); %运动模糊函数,运动位移是25像素,角度是11Blurred=imfilter(I,PSF,conv,circular); %对图像运动模糊处理subplot(1,3,2);imshow(Blurred,); %显示无噪声运动模糊图像title(无噪声运动模糊图像); WI1=deconvwnr(Blurred,PSF); %不带参数的维纳滤波(逆滤波)复原subp

5、lot(1,3,3); imshow(WI1,); %显示逆滤波复原结果title(逆滤波复原结果); 执行结果:图2 对无噪声的运动模糊图像进行逆滤波复原实验结果分析:由实验结果可以看出,当图像无噪声或噪声较小,即轻度降质时,采用逆滤波恢复的方法可以获得较好的结果。b) 对有噪声运动模糊图像用deconvwnr(I,PSF)、deconvwnr(I,PSF,NSR) 和deconvwnr(I,PSF,NCORR,ICORR)函数进行复原。程序代码:I=imread(cameraman.tif); %读取图像subplot(2,3,1);imshow(I,); %显示图像title(原始图像)

6、;PSF=fspecial(motion,25,11); %运动模糊函数,运动位移是25像素,角度是11Blurred=imfilter(I,PSF,conv,circular); %对图像运动模糊处理Noise=0.05*randn(size(I); %正态分布的随机噪声BlurredNoisy=imadd(Blurred,im2uint8(Noise);%对退化后的图像附加噪声subplot(2,3,2);imshow(BlurredNoisy,); %显示运动模糊且加噪声后图像title(运动模糊且加噪声后图像);WI1=deconvwnr(BlurredNoisy,PSF); %不带参

7、数的维纳滤波(逆滤波)复原subplot(2,3,3); imshow(WI1,); %显示逆滤波复原结果title(逆滤波复原结果);NSR=sum(Noise(:).2)/sum(im2double(I(:).2);%计算噪信比WI2=deconvwnr(BlurredNoisy,PSF,NSR); %带噪信比参数的维纳滤波复原subplot(2,3,4);imshow(WI2,); %显示带噪信比参数维纳滤波复原结果title(带噪信比参数维纳滤波复原结果);NP=abs(fftn(Noise).2;NCORR=real(ifftn(NP); %计算噪声的自相关函数IP=abs(fftn

8、(im2double(I).2;ICORR=real(ifftn(IP); %计算信号的自相关函数WI3=deconvwnr(BlurredNoisy,PSF,NCORR,ICORR); %带自相关函数的维纳滤波复原subplot(2,3,5);imshow(WI3,); title(带自相关函数的维纳滤波复原);执行结果:图3 对运动模糊退化且加噪声的图像进行维纳滤波实验结果分析:比较复原结果可以发现,在对图像和噪声信息都未知的情况下采用不带参数的维纳滤波(逆滤波)形式进行复原效果很不好,在已知信噪比NSR参数的情况的维纳滤波复原效果有了较大的改善,在已知噪声和原图像的自相关函数等参数的情况

9、下的维纳滤波复原效果最佳。c) 在实际应用过程中,常常无法准确得知噪声图像和理想图像的功率谱,试着用常数K来代替NSR,并通过实验观察不同K对图像复原效果的影响。程序代码:I=imread(cameraman.tif); %读取图像subplot(1,3,1);imshow(I,);%显示图像title(原始图像);PSF=fspecial(motion,25,11); %运动模糊函数,运动位移是25像素,角度是11Blurred=imfilter(I,PSF,conv,circular); %对图像运动模糊处理Noise=0.05*randn(size(I); %正态分布的随机噪声Blurr

10、edNoisy=imadd(Blurred,im2uint8(Noise);%对退化后的图像附加噪声WI1=deconvwnr(BlurredNoisy,PSF); %不带参数的维纳滤波(逆滤波)复原NSR=sum(Noise(:).2)/sum(im2double(I(:).2); %计算噪信比WI2=deconvwnr(BlurredNoisy,PSF,NSR); %带噪信比参数的维纳滤波复原subplot(2,3,1);imshow(WI2,); %显示带噪信比参数维纳滤波复原结果title(NSR取均值复原结果);WI3=deconvwnr(BlurredNoisy,PSF,0.005

11、); %噪信比取0.005参数的维纳滤波复原subplot(2,3,2);imshow(WI3,); title(NSR=0.005复原结果);WI4=deconvwnr(BlurredNoisy,PSF,0.001); %带噪信比取0.002参数的维纳滤波复原subplot(2,3,3);imshow(WI4,); %显示带噪信比参数维纳滤波复原结果title(NSR=0.001复原结果); WI5=deconvwnr(BlurredNoisy,PSF,0.01); %带噪信比取0.01参数的维纳滤波复原subplot(2,3,4);imshow(WI5,); %显示复原结果title(NS

12、R=0.01复原结果);WI6=deconvwnr(BlurredNoisy,PSF,0.05); %带噪信比取0.05参数的维纳滤波复原subplot(2,3,5);imshow(WI6,); title(NSR=0.05复原结果);WI7=deconvwnr(BlurredNoisy,PSF,0.1); %带噪信比取0.1参数的维纳滤波复原subplot(2,3,6);imshow(WI7,); %显示复原结果title(KNS=0.1复原结果);执行结果:图4 不同噪信比参数的维纳滤波复原实验结果分析:由实验结果可知,在带噪信比参数的维纳滤波复原中,当NSR取均值时滤波效果是最好的,随着

13、滤波中NSB由均值减小时,图像的模糊运动减小但同时噪声增强了;反之,当NSB由均值增大时,图像的模糊运动增强噪声减小了。三、实验中遇到问题及解决方法1. 图像复原和图像增强两者之间的区别。图像复原又称为图像恢复,图像复原和图像增强一样,都是为了改善图像视觉效果,以及便于后续处理。只是图像增强方法更偏向主观判断,而图像恢复则是根据图像畸变或退化原因,进行模型化处理。四、实验心得体会通过这个实验,使我对图像复原和图像增强两者之间的区别有了更加清晰的认识;在实验过程中了解了维纳滤波的原理,功能以及在图像处理方面的应用。维纳滤波器是对噪声背景下的信号进行估计,它是最小均方误差准则下的最佳线性滤波器,在

14、已知信噪比NSR参数的情况的维纳滤波复原效果有较大的改善。五、源程序清单%1用点扩散(PSF)函数创建运动模糊图像,修改参数改变模糊程度。I=imread(cameraman.tif); %读取图像subplot(1,3,1);imshow(I,);%显示图像title(原始图像);PSF=fspecial(motion,25,11); %运动模糊函数,运动位移是25像素,角度是11Blurred=imfilter(I,PSF,conv,circular); %对图像运动模糊处理subplot(1,3,2);imshow(Blurred,);title(无噪声运动模糊图像); %显示无噪声运动

15、模糊图像Noise=0.05*randn(size(I); %正态分布的随机噪声BlurredNoisy=imadd(Blurred,im2uint8(Noise);%对退化后的图像附加噪声subplot(1,3,3);imshow(BlurredNoisy,);title(有噪声运动模糊图像); %显示运动模糊且加噪声后图像%2用维纳滤波复原函数deconvwnr 对模糊图像进行复原重建。 %a) 对无噪声运动模糊图像用deconvwnr(I,PSF)进行复原;I=imread(cameraman.tif); %读取图像subplot(1,3,1);imshow(I,); %显示图像titl

16、e(原始图像); PSF=fspecial(motion,25,11); %运动模糊函数,运动位移是25像素,角度是11Blurred=imfilter(I,PSF,conv,circular); %对图像运动模糊处理subplot(1,3,2);imshow(Blurred,); %显示无噪声运动模糊图像title(无噪声运动模糊图像); WI1=deconvwnr(Blurred,PSF); %不带参数的维纳滤波(逆滤波)复原subplot(1,3,3); imshow(WI1,); %显示逆滤波复原结果title(逆滤波复原结果); %2用维纳滤波复原函数deconvwnr 对模糊图像进

17、行复原重建。 %b) 对有噪声运动模糊图像用deconvwnr(I,PSF)、deconvwnr(I,PSF,NSR)和deconvwnr(I,PSF,NCORR,ICORR)函数进行复原I=imread(cameraman.tif); %读取图像subplot(2,3,1);imshow(I,); %显示图像title(原始图像);PSF=fspecial(motion,25,11); %运动模糊函数,运动位移是25像素,角度是11Blurred=imfilter(I,PSF,conv,circular); %对图像运动模糊处理Noise=0.05*randn(size(I); %正态分布的

18、随机噪声BlurredNoisy=imadd(Blurred,im2uint8(Noise);%对退化后的图像附加噪声subplot(2,3,2);imshow(BlurredNoisy,); %显示运动模糊且加噪声后图像title(运动模糊且加噪声后图像);WI1=deconvwnr(BlurredNoisy,PSF); %不带参数的维纳滤波(逆滤波)复原subplot(2,3,3); imshow(WI1,); %显示逆滤波复原结果title(逆滤波复原结果);NSR=sum(Noise(:).2)/sum(im2double(I(:).2);%计算噪信比WI2=deconvwnr(Blu

19、rredNoisy,PSF,NSR); %带噪信比参数的维纳滤波复原subplot(2,3,4);imshow(WI2,); %显示带噪信比参数维纳滤波复原结果title(带噪信比参数维纳滤波复原结果);NP=abs(fftn(Noise).2;NCORR=real(ifftn(NP); %计算噪声的自相关函数IP=abs(fftn(im2double(I).2;ICORR=real(ifftn(IP); %计算信号的自相关函数WI3=deconvwnr(BlurredNoisy,PSF,NCORR,ICORR); %带自相关函数的维纳滤波复原subplot(2,3,5);imshow(WI3

20、,); title(带自相关函数的维纳滤波复原);%2用维纳滤波复原函数deconvwnr 对模糊图像进行复原重建。 %c) 对有噪声运动模糊图像用deconvwnr(I,PSF)、deconvwnr(I,PSF,NSR)和deconvwnr(I,PSF,NCORR,ICORR)函数进行复原I=imread(cameraman.tif); %读取图像subplot(1,3,1);imshow(I,);%显示图像title(原始图像);PSF=fspecial(motion,25,11); %运动模糊函数,运动位移是25像素,角度是11Blurred=imfilter(I,PSF,conv,ci

21、rcular); %对图像运动模糊处理Noise=0.05*randn(size(I); %正态分布的随机噪声BlurredNoisy=imadd(Blurred,im2uint8(Noise);%对退化后的图像附加噪声subplot(1,3,2);imshow(BlurredNoisy,); %显示运动模糊且加噪声后图像title(运动模糊且加噪声后图像);WI1=deconvwnr(BlurredNoisy,PSF); %不带参数的维纳滤波(逆滤波)复原subplot(1,3,3); imshow(WI1,); %显示逆滤波复原结果title(逆滤波复原结果);figureNSR=sum(

22、Noise(:).2)/sum(im2double(I(:).2); %计算噪信比WI2=deconvwnr(BlurredNoisy,PSF,NSR); %带噪信比参数的维纳滤波复原subplot(2,3,1);imshow(WI2,); %显示带噪信比参数维纳滤波复原结果title(NSR取均值复原结果);WI3=deconvwnr(BlurredNoisy,PSF,0.005); %噪信比取0.005参数的维纳滤波复原subplot(2,3,2);imshow(WI3,); title(NSR=0.005复原结果);WI4=deconvwnr(BlurredNoisy,PSF,0.001

23、); %带噪信比取0.002参数的维纳滤波复原subplot(2,3,3);imshow(WI4,); %显示带噪信比参数维纳滤波复原结果title(NSR=0.001复原结果);WI5=deconvwnr(BlurredNoisy,PSF,0.01); %带噪信比取0.01参数的维纳滤波复原subplot(2,3,4);imshow(WI5,); %显示复原结果title(NSR=0.01复原结果);WI6=deconvwnr(BlurredNoisy,PSF,0.05); %带噪信比取0.05参数的维纳滤波复原subplot(2,3,5);imshow(WI6,); title(NSR=0.05复原结果);WI7=deconvwnr(BlurredNoisy,PSF,0.1); %带噪信比取0.1参数的维纳滤波复原subplot(2,3,6);imshow(WI7,); %显示复原结果title(KNS=0.1复原结果);

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 小学资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁