RFID复习题1(参考).doc

上传人:豆**** 文档编号:33456378 上传时间:2022-08-11 格式:DOC 页数:14 大小:149KB
返回 下载 相关 举报
RFID复习题1(参考).doc_第1页
第1页 / 共14页
RFID复习题1(参考).doc_第2页
第2页 / 共14页
点击查看更多>>
资源描述

《RFID复习题1(参考).doc》由会员分享,可在线阅读,更多相关《RFID复习题1(参考).doc(14页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、如有侵权,请联系网站删除,仅供学习与交流一、一、一、一、一、一、一、一、 RFID复习题1(参考)【精品文档】第 14 页一、 填空题1、自动识别技术是应用一定的识别装置,通过被识别物品和识别装置之间的接近活动,自动地获取被识别物品的相关信息,常见的自动识别技术有语音识别技术、图像识别技术、射频识别技术、条码识别技术(至少列出四种)。2、RFID的英文缩写是Radio Frequency Identification。3、RFID系统通常由电子标签、读写器和计算机通信网络三部分组成。4、在RFID系统工作的信道中存在有三种事件模型:以能量提供为基础的事件模型以时序方式提供数据交换的事件模型以数

2、据交换为目的的事件模型5、时序指的是读写器和电子标签的工作次序。通常,电子标签有两种时序:TTF(Target Talk First),RTF(Reader Talk First)。6、读写器和电子标签通过各自的天线构建了二者之间的非接触信息传输通道。根据观测点与天线之间的距离由近及远可以将天线周围的场划分为三个区域:非辐射场区、辐射近场区、辐射远场区。7、上一题中第二个场区与第三个场区的分界距离R为R=2D2/。(已知天线直径为D,天线波长为。)8、在RFID系统中,读写器与电子标签之间能量与数据的传递都是利用耦合元件实现的,RFID系统中的耦合方式有两种:电感耦合式、电磁反向散射耦合式。9

3、、读写器和电子标签之间的数据交换方式也可以划分为两种,分别是负载调制、反向散射调制。10、按照射频识别系统的基本工作方式来划分,可以将射频识别系统分为全双工、半双工、时序系统。11、读写器天线发射的电磁波是以球面波的形式向外空间传播,所以距离读写器R处的电子标签的功率密度S为(读写器的发射功率为PTx,读写器发射天线的增益为GTx,电子标签与读写器之间的距离为R):S= (PTxGTx)/(4R2)。12、按照读写器和电子标签之间的作用距离可以将射频识别系统划分为三类:密耦合系统、远耦合系统、远距离系统。13、典型的读写器终端一般由天线、射频模块、逻辑控制模块三部分构成。14、控制系统和应用软

4、件之间的数据交换主要通过读写器的接口来完成。一般读写器的I/O接口形式主要有:USB、WLAN、以太网接口、RS-232串行接口、RS-485串行接口。15、随着RFID技术的不断发展,越来越多的应用对RFID系统的读写器也提出了更高的要求,未来的读写器也将朝着多功能、小型化、便携式、嵌入式、模块化的方向发展。16、从功能上来说,电子标签一般由天线、调制器、编码发生器、时钟、存储电路组成。17、读写器之所以非常重要,这是由它的功能所决定的,它的主要功能有:与电子标签通信、标签供能、多标签识别、移动目标识别。18、根据电子标签工作时所需的能量来源,可以将电子标签分为有源/无源标签。19、按照不同

5、的封装材质,可以将电子标签分为纸、塑料、玻璃。20、电子标签的技术参数主要有传输速率、读写速度、工作频率、能量需求。21、未来的电子标签将有以下的发展趋势:成本低,体积小,容量大,工作距离远。22、完整性是指信息未经授权不能进行改变的特性,保证信息完整性的主要方法包括以下几种:协议、纠错编码方法、密码校验和方法、数字签名、公证。23、常用的差错控制方式主要有检错重发、前向纠错、混合纠错。24、差错控制时所使用的编码,常称为纠错编码。根据码的用途,可分为检错码和纠错码。25、在发送端需要在信息码元序列中增加一些差错控制码元,它们称为监督码元。26、设信息位的个数为k,监督位的个数为r,码长为n=

6、k+r,则汉明不等式为:2r-1n。27、两个码组中对应位上数字不同的位数称为码距,又称汉明距离,用符号D(a,b)表示,如两个二元序列a=111001,b=101101,则D(a,b)=2。28、最常用的差错控制方法有奇偶校验、循环冗余校验、汉明码。29、在偶校验法中,无论信息位多少,监督位只有1位,它使码组中“1”的数目为偶数。30、常用的奇偶检验法为垂直奇偶校验、水平奇偶校验、垂直水平奇偶校验。31、RFID系统中的数据传输也分为两种方式:阅读器向电子标签的数据传输,称为下行链路传输;电子标签向阅读器的数据传输,称为上行链路传输。32、电感耦合式系统的工作模型类似于变压器模型。其中变压器

7、的初级和次级线圈分别是:阅读器天线线圈和电子标签天线线圈。33、电子标签按照天线的类型不同可以划分为线圈型、微带贴片型、偶极子型三种。34、随着RFID技术的进一步推广,一些问题也相应出现,这些问题制约着它的发展,其中最为显著的是数据安全问题。数据安全主要解决数据保密和认证的问题。35、常见的密码算法体制有对称密码体系和非对称密码体系两种。36、根据是否破坏智能卡芯片的物理封装,可以将智能卡的攻击技术分为破坏性攻击、非破坏性攻击。37、RFID系统中有两种类型的通信碰撞存在,一种是阅读器碰撞,另一种是电子标签碰撞。38、为了防止碰撞的发生,射频识别系统中需要设计相应的防碰撞技术,在通信中这种技

8、术也称为多址技术,多址技术主要分为以下四种:空/频/码/时分多址。39、TDMA算法又可以分为基于概率的ALOHA算法和确定的二进制算法两种。40、上述两种TDMA算法中,会出现“饿死”现象的算法是基于概率的ALOHA算法。41、物联网(Internet of things)被称为是信息技术的一次革命性创新,成为国内外IT业界和社会关注的焦点之一。它可以分为标识、感知、处理、信息传送四个环节。42、上述物联网四个环节对应的关键技术分别为RFID、传感器、智能芯片、无线传输网络。43、RFID系统通常由电子标签、读写器、应用软件三部分组成。44、RFID系统按照工作频率分类,可以分为低频、高频、

9、超高频、微波四类。45、高频RFID系统典型的工作频率是13.56MHz。46、超高频RFID系统遵循的通信协议一般是ISO18000-7、ISO18000-6。47、目前国际上与RFID相关的通信标准主要有:ISO/IEC 18000标准、EPC Global 标准。48、基于概率的ALOHA算法又可以分为:纯ALOHA算法、时隙ALOHA算法、帧时隙ALOHA算法等。49、电子标签含有物品唯一标识体系的编码,其中电子产品代码(EPC)是全球产品代码的一个分支,它包含著一系列的数据和信息,如产地、日期代码和其他关键的供应信息。50、超高频RFID系统的识别距离一般为110m。51、超高频RF

10、ID系统数据传输速率高,可达1kb/s。二、选择题1、下列哪一项不是低频RFID系统的特点? A A、它遵循的通信协议是ISO18000-3 B、它采用标准CMOS工艺,技术简单C、它的通信速度低 D、它的识别距离短(10cm)2、下列哪一项是超高频RFID系统的工作频率范围?BA、150KHz B、433.92MHz 和860960MHz C、13.56MHz D、2.455.8GHz3、ISO18000-3、ISO14443和ISO15693这三项通信协议针对的是哪一类RFID系统?BA、低频系统 B、高频系统 C、超高频系统 D、微波系统4、未来RFID的发展趋势是 C 。A低频RFID

11、 B、高频RFID C、超高频RFID D、微波RFID5、中国政府在2007年发布了关于发布 D 频段射频识别(RFID)技术应用试行规定的通知?A 、150KHz B、13.56MHz C、2.455.8GHz D、800/900MHz6、上述通知规定了中国UHF RFID技术的试用频率为 C 。A、125KHz B、13.56MHz C、840-845MHz和920-925 MHz D、433.92MHz7、下列哪一个载波频段的RFID系统拥有最高的带宽和通信速率、最长的识别距离和最小的天线尺寸? D A、150KHz B、433.92MHz 和860960MHz C、13.56MHz

12、D、2.455.8GHz8、在一个RFID系统中,下列哪一个部件一般占总投资的60%至70%? A A、电子标签 B、读写器 C、天线 D、应用软件9、 B 是电子标签的一个重要组成部分,它主要负责存储标签内部信息,还负责对标签接收到的信号以及发送出去的信号做一些必要的处理。A、天线 B、电子标签芯片 C、射频接口 D、读写模块10、绝大多数射频识别系统的耦合方式是 A 。A、电感耦合式 B、电磁反向散射耦合式 C、负载耦合式 D、反向散射调制式11、在RFID系统中,电子标签的天线必须满足一些性能要求。11、下列几项要求中哪一项不需要满足 D 。A、体积要足够小B、要具有鲁棒性 C、价格不应

13、过高 D、阻抗要足够大12、读写器中负责将读写器中的电流信号转换成射频载波信号并发送给电子标签,或者接收标签发送过来的射频载波信号并将其转化为电流信号的设备是 B 。A、射频模块 B、天线 C、读写模块 D、控制模块13、若对下列数字采用垂直奇校验法,则最后一行的监督码元为 C 。位/数字0123456789C10101010101C20011001100C30000111100C40000000011C51111111111C61111111111C70000000000奇校验A、0110100110 B、0110111001 C、1001011001 D、100110000114、任意一个

14、由二进制位串组成的代码都可以和一个系数仅为0和1取值的多项式一一对应。则二进制代码10111对应的多项式为 A 。A、x4+x2+x+1 B、x6+x4+x2+x+1 C、x5+x3+x2+x+1 D、x5+x3+x+115、在射频识别系统中,识读率和误码率是用户最为关心的问题。已知待识读标签数为NA,正确识读的标签数为NR,每个标签的码元数为NL,读写器识读出发生错误的码元总数为NE则识读率为 C A、 B、 C、 D、16、在射频识别应用系统上主要采用三种传输信息保护方式,下列哪一种不是射频识别应用系统采用的传输信息保护方式: D 。A、认证传输方式 B、加密传输方式 C、混合传输方式 D

15、、分组传输方式17、电子标签正常工作所需要的能量全部是由阅读器供给的,这一类电子标签称为 B 。A、有源标签 B、无源标签 C、半有源标签 D、半无源标签18、在天线周围的场区中有一类场区,在该区域里辐射场的角度分布与距天线口径的距离远近是不相关的。这一类场区称为 A 。A、辐射远场区 B、辐射近场区 C、非辐射场区 D、无功近场区 19、在射频识别系统中,最常用的防碰撞算法是 C 。A、空分多址法 B、频分多址法 C、时分多址法 D、码分多址法。20、在纯ALOHA算法中,假设电子标签在t时刻向阅读器发送数据,与阅读器的通信时间为To,则碰撞时间为 A 。A、2To B、To C、t+To

16、D、0.5To21、在基本二进制算法中,为了从N个标签中找出唯一一个标签,需要进行多次请求,其平均次数L为: B 。A、 B、 C、 D、22、RFID信息系统可能受到的威胁有两类:一类是物理环境威胁,一类是人员威胁,下列哪一项属于人员威胁: D 。A、电磁干扰 B、断电 C、设备故障 D、重放攻击23、RFID系统面临的攻击手段主要有主动攻击和被动攻击两种。下列哪一项属于被动攻击: C 。A、获得RFID标签的实体,通过物理手段进行目标标签的重构。B、用软件利用微处理器的通用接口,寻求安全协议加密算法及其实现弱点,从而删除或篡改标签内容。C、采用窃听技术,分析微处理器正常工作过程中产生的各种

17、电磁特征,获得RFID标签和阅读器之间的通信数据。D、通过干扰广播或其他手段,产生异常的应用环境,使合法处理器产生故障,拒绝服务器攻击等。24、通信双方都拥有一个相同的保密的密钥来进行加密、解密,即使二者不同,也能够由其中一个很容易的推导出另外一个。该类密码体制称为 B 。A、非对称密码体制 B、对称密码体制 C、RSA算法 D、私人密码体制25、射频识别系统中的加密数据传输所采用的密码体制是 D 。A、非对称密码体制 B、RSA算法 C、DES算法 D、序列密码体制26、当读写器发出的命令以及数据信息发生传输错误时,如果被电子标签接收到,那么不会导致以下哪项结果: A 。A、读写器将一个电子

18、标签判别为另一个电子标签,造成识别错误;B、电子标签错误的响应读写器的命令;C、电子标签的工作状态发生混乱;D、电子标签错误的进入休眠状态。27、设编码序列中信息码元数量为k,总码元数量为n,则比值k/n 就是 D 。A、多余度 B、冗余度 C、监督码元 D、编码效率28、射频识别系统中的哪一个器件的工作频率决定了整个射频识别系统的工作频率,功率大小决定了整个射频识别系统的工作距离: C 。A、电子标签 B、上位机 C、读写器 D、计算机通信网络29、工作在13.56MHz频段的RFID系统其识别距离一般为 C 。A、1cm B、10cm C、75cm D、10m30、DSRC标准适用的频段是

19、 D 。A、150KHz B、433.92MHz 和860960MHz C、13.56MHz D、2.455.8GHzRFID复习RFID系统概论一、RFIDRadio Frequency Identification RFID利用射频信号通过空间耦合实现无接触信息传递达到识别目标的技术。系统通常读写器、电子标签及应用软件组成。可用于物流,电子票证,动物或资产追踪管理,供应冷链,高速公路智能收费等领域。 二、工作原理:读写器控制射频模块发出射频信号,电子标签主动发送(有源标签)或者凭借感应电流所获得的能量(无源标签)发送出芯片中的存储信息,接收标签的应答,读写器对标签的传递过来的信息进行解码,

20、并传输到主机进行数据处理。1)在低频段(100MHz以下)基于电感耦合(近距)2)在高频段(400MHz以上)基于电磁反向散射耦合(雷达,远距)三、按工作频段分类:工作频段通信标准协议优点缺点低频(LF)125KHzISO18000-2ISO11785标准CMOS工艺技术简单可靠成熟无频率限制通信速度低识别距离短(10cm)天线尺寸大高频(HF)13.56MHzISO18000-3ISO14443ISO15693与标准CMOS工艺兼容技术可靠成熟在交通智能卡等领域应用广泛距离不够远(75cm)天线尺寸大,受金属材料等影响大超高频(UHF)840-845MHz和920-925 MHzISO180

21、00-6ISO18000-7长距离定向识别天线尺寸小,可绕射,无需可视距离,发展潜力巨大各国有不同的频段管制,受金属和液体等材料影响较大对人体有伤害,限制发射功率微波2.455.8GHz ISO18000-4DSRC除了UHF特性外更高的带宽和通信速率更长识别距离,更小的天线尺寸ISM频段共享产品多易受干扰,技术相对复杂对人体有伤害,限制发射功率RFID的工作原理 一、RFID工作原理 阅读器通过天线向周围空间发送一定频率的射频信号; 标签一旦进入阅读器天线的作用区域将产生感应电流,获得能量被激活;激活标签将自身信息编码后经天线发送出去; 阅读器接收该信息,经过解码后必要时送至后台网络; 后台

22、网络中主机鉴定标签身份的合法性,只对合法标签进行相关处理,通过向前端发送指令信号控制阅读器对标签的读写操作;二、RFID的三种工作模型1)以能量供给为基础的工作模型无源电子标签:当标签进入阅读器的工作范围内以后,标签收到阅读器发送的信号,产生感应电流从而激活内部的电路,内部整流电路将射频能量转化为电能,将该能量存储在标签内部的大电容里,进而为其正常工作提供了所需的能量。半有源电子标签:阅读器发送的射频信号只用来激活标签。有源电子标签:只要标签处于阅读器的工作范围以内,就可以主动向阅读器发送信号。2)以时序方式完成数据传输的工作模型阅读器先发言模式(RTF, Reader Talk First)

23、如果阅读器不主动激活电子标签的话,电子标签不会向阅读器发送信号,通常用于无源标签。电子标签先发言模式(TTF, Tag Talk First)就算阅读器不激活标签,标签也会主动向阅读器发送信号3)以数据传输为目的的工作模型上行链路传输电子标签向阅读器的数据传输。下行链路传输阅读器向电子标签的数据传输。离线写入:无论是哪一类电子标签都有离线写入这种情况。所有电子标签在出厂之前都要由生产厂家将标签的ID号(EPC)固化写入,该ID号是标签的身份标识,是唯一的,一旦写入以后将永远不能修改。在线写入:拓展高级功能,可写标签,结构复杂,成本高。三、 RFID防碰撞理论1)碰撞的种类阅读器碰撞:多个阅读器

24、同时与一个标签通信,致使标签无法区分阅读器的信号。电子标签碰撞:多个标签同时响应阅读器的命令而发送信息,使阅读器无法识别标签。2)传统解决方案1)空分多址(SDMA) 2)频分多址(FDMA) 3)码分多址(CDMA) 4)时分多址(TDMA)应用最广泛,又可以分为基于概率的ALOHA算法(饿死)和确定的二进制算法两种。3)ALOHA反碰撞算法1、纯ALOHA算法 主要采用标签先发言(Tag-Talk-First)的方式,即电子标签一旦进入阅读器的工作范围获得能量后,便向阅读器主动发送自身的序列号。 在某个电子标签向阅读器发送数据的过程中,如果有其它电子标签也同时向该阅读器发送数据,此时阅读器

25、接收到的信号就会产生重叠,导致阅读器无法正确识别和读取数据。 阅读器通过检测并判断接收到的信号是否发生碰撞,一旦发生碰撞,阅读器则向标签发送指令使电子标签停止数据的传送,电子标签接到阅读器的指令后,便随机的延迟一段时间再重新发送数据。在纯ALOHA算法中,假设电子标签在t时刻向阅读器发送数据,与阅读器的通信时间为To,则碰撞时间为2T0。G为数据包交换量,S为吞吐率。2、Slotted ALOHA算法: 为提高RFID系统的吞吐率,可以把时间划分为多段等长的时隙,时隙的长度由系统时钟确定,并且规定电子标签只能在每个时隙的开始时才能向阅读器发送数据帧,这就是Slotted ALOHA算法; 根据

26、上述规定可得,数据帧要么成功发送,要么完全碰撞,避免了纯ALOHA算法中部分碰撞的发生,使碰撞周期变为To; 它是纯ALOHA算法的简单改进,也属于时分多址法,它的缺点是需要同步时钟的控制;3、Frame Slotted ALOHA算法(FSA): ALOHA 的另一种改进算法是帧时隙 ALOHA 算法(FSA)。 它是在Slotted ALOHA 算法的基础上把 N 个相同的时隙组成一帧,且在整个电子标签识别过程中,帧的大小是固定的,帧中的每个时隙足够一个电子标签与阅读器进行完通信,该算法也称为固定帧时隙 ALOHA 算法。 该算法比较适用于传输信息量较大的场合,和Slotted ALOHA

27、 算法一样,帧时隙 ALOHA 算法同样需要一个同步开销。步骤 首先由阅读器把帧长度 N 发送给电子标签,电子标签则产生1,N之间的随机数,接下来各电子标签选择相应的时隙,与阅读器进行通信; 如果当前时隙与电子标签随机产生的数相同,电子标签则响应阅读器的命令,若不同,标签则继续等待。 假如当前时隙内仅有一个电子标签响应,阅读器就读取该标签发送的数据,读取完了以后就使该标签处于“无声”状态。 如果当前时隙内有多个标签响应,则该时隙内的数据就出现了碰撞,此时阅读器会通知该时隙内的标签,让它们在下一轮帧循环中重新产生随机数参与通信。 逐帧循环,直到识别出所有电子标签为止。4、Dynamic FSA

28、算法: 该算法根据上一读写周期中统计的成功识别的时隙数、发生碰撞的时隙数、空闲时隙数信息来调整下一读写周期的帧长度。具体调整方法有两种。 第一种:根据统计信息,当碰撞时隙数达到规定的上限时,读写器增大下一帧的长度;当碰撞时隙数少于规定的下限时,读写器减少下一帧时隙数。使用该方法当标签规模不大时,读写器使用较短的帧长度就能快速识别标签,而当标签数量很多时,读写器不得不增加帧长度以减少碰撞次数。 第二种: 读写器以 2 或 4 个时隙数为一帧开始,如果没有一个标签能够成功识别,读写器增加帧长度开始下一轮读写周期。重复上述过程直到至少有一个标签被成功识别。当有一个标签成功识别后,读写器立刻停止当前的

29、读写周期,然后读写器再以开始时最小的帧长度开始下一轮读写识别。 该算法通过动态调整帧长度,相比帧时隙算法在标签规模不大时能够取得较理想的吞吐率。可是一旦标签个数很大时,增大帧长度就不是很好的解决方法,因为帧长度不能无限制的增大。 采用ALOHA系列算法,假设阅读器射频工作范围内存在 n 个标签,理论上阅读器至少需要 n 个时隙的时间才能成功识别完,最坏的情况下,阅读器经过多次搜索也未能识别出某个标签,导致出现“饿死现象”。 而Binary-Tree系列算法并不会采取退避原则,而是直接进行解决。当多标签同时发送信息而碰撞时,读写器利用碰撞位将碰撞的标签分为两个或更多子集,对每个子集分别识别。如果

30、存在碰撞则继续再划分,直到标签被完全识别为止。这样则有效地避免了标签的“饿死现象”。 四、RFID相关电磁场理论读写器和电子标签通过各自的天线构建了二者之间的非接触信息传输通道。根据观测点与天线之间的距离由近及远可以将天线周围的场划分为三个区域:非辐射场区:场强与距离天线的远近有关,电磁能量只在场源附近来回流动,随着与天线的距离不断增大,场强不断减小。 分界:R=/2辐射近场区:菲涅尔区,电磁能量会脱离天线的束缚进入到外空间。该区域里辐射场的角度分布与距天线口径的距离远近有关。分界:R=2D2/(已知天线直径为D,天线波长为)辐射远场区:夫郎荷费区,该区域里辐射场的角度分布与距天线口径的距离远

31、近是不相关的。五、RFID的能量传递 读写器到电子标签的能量传递 距离读写器R处的电子标签的功率密度S为:电子标签所能接收到的最大功率Ptag:PTx读写器的发射功率,GTx读写器发射天线的增益,Gtag电子标签接收天线的增益,R电子标签与读写器间距电子标签到读写器的能量传递Pback电子标签反射出去的功率,雷达散射截面,Sback功率密度,PRx读写器接收到的功率RFID读写器一、读写器的功能 实现与电子标签的通讯:最常见的就是对标签进行读数,这项功能需要有一个可靠的软件算法确保安全性、可靠性等。除了进行读数以外,有时还需要对标签进行写入,这样就可以对标签批量生产,由用户按照自己需要对标签进

32、行写入; 给标签供能:在标签是被动式或者半被动式的情况下,需要读写器提供能量来激活射频场周围的电子标签;阅读器射频场所能达到的范围主要由天线的大小以及阅读器的输出功率决定的。天线的大小主要是根据应用要求来考虑的,而输出功率在不同国家和地区,都有不同的规定。实现与计算机网络的通讯实现多标签识别实现移动目标识别实现错误信息提示 有源标签的电池信息二、读写器的组成天线: 发射和接收射频载波信号 将读写器中的电流信号转换成射频载波信号并发送给电子标签,或者接收标签发送过来的射频载波信号并将其转化为电流信号; 无源标签能量供给射频接口模块 包括发射器、射频接收器、时钟发生器和电压调节器等。该模块是读写器

33、的射频前端,负责射频信号的发射及接收。 调制电路负责将需要发送给电子标签的信号加以调制,然后再发送; 解调电路负责将解调标签送过来的信号并进行放大; 时钟发生器负责产生系统的正常工作时钟。逻辑控制模块 读写器的逻辑控制模块是整个读写器工作的控制中心、智能单元,是读写器的“大脑”, 读写器在工作时由逻辑控制模块发出指令,射频接口模块按照不同的指令做出不同的操作。 包括微控制器、存储单元和应用接口驱动电路等。 微控制器可以完成信号的编解码、数据的加解密以及执行防碰撞算法; 存储单元负责存储一些程序和数据; 应用接口负责与上位机进行输入或输出的通信。三、读写器的IO接口RS-232串行接口:计算机普

34、遍适用的标准串行接口,能够进行双向的数据信息传递。它的优势在于通用、标准,缺点是传输距离不会达到很远,传输速度也不会很快。RS-485串行接口:也是一类标准串行通信接口,数据传递运用差分模式,抵抗干扰能力较强,传输距离比RS-232传输距离较远,传输速度与RS-232差不多。以太网接口:阅读器可以通过该接口直接进入网络。USB接口:也是一类标准串行通信接口,传输距离较短,传输速度较高。四、读写器的发展趋势低成本,多功能、多制式兼容、多频段兼容、小型化、多数据接口、便携式、多智能天线端口、嵌入式和模块化。RFID电子标签一、RFID电子标签的构成天线:主要的功能是接收阅读器传送过来的电磁信号或者

35、将阅读器所需要的数据传回给阅读器,也就是负责发射和接收电磁波。它是电子标签与读写器之间联系的重要一环; 天线的要求体积要足够小,因为天线还要嵌入到体积很小的电子标签中要具有全向性,或者覆盖半球的方向性要能够为电子标签当中的芯片供给能量,并保证芯片获得的信号最大化要保证不管标签的位置在哪里,天线都能够正常的与阅读器进行通信要具有鲁棒性。考虑到电子标签的价格,天线的价格也不应过高。 天线的分类(1)线圈型 (2)微带贴片天线(3)偶极子天线射频接口:电压调节单元:主要用来把从读写器接收过来的射频信号转化为直流电源(DC),并且经由其内部的储能装置(大电容)将能量储存起来,再通过稳压电路,以确保稳定

36、的电源供应;调制解调单元:由控制单元传出的数据需要经过调制单元的调制以后,才能加载到天线上,成为天线可以传送的射频信号,再回传给阅读器;解调单元负责将经过调制的信号加以解调,将载波去除,以获得最初的调制信号芯片:存储单元:主要用于存储系统运行时产生的数据或者识别数据等。逻辑控制单元:负责对读写器传送来的信号进行译码,并且按照读写器的要求回传数据给读写器二、电子标签的技术参数能量需求传输速率读写速度工作频率容量封装形式三、电子标签的发展趋势工作距离更远:无线可读写性能更加完善更加适合高速移动物体识别快速多标签读写功能更加完善自我保护功能更加完善标签附属功能更多。体积更小成本更低射频数据的完整性一

37、、射频数据的完整性基本概念完整性:指信息未经授权不能进行改变的特性。即信息在存储或传输过程中保持不被偶然或蓄意地删除、修改、伪造、乱序、重放、插入等破坏和丢失的特性。影响信息完整性的主要因素有:设备故障、误码(传输、处理和存储过程中产生的误码,定时的稳定度和精度降低造成的误码,各种干扰源造成的误码)、人为攻击、计算机病毒等。保证信息完整性: 协议:通过各种安全协议可以有效地检测出被复制的信息、被删除的字段、失效的字段和被修改的字段。 纠错编码方法:由此完成检错和纠错功能。最简单和常用的纠错编码方法是奇偶校验法。 密码校验和方法:它是抗篡改和传输失败的重要手段。 数字签名:保障信息的真实性。 公

38、证:请求网络管理或中介机构证明信息的真实性。二、RFID系统的数据传输出错当接收读写器发出的命令以及数据信息发生传输错误时,如果被电子标签接收到,可能会导致以下结果: 电子标签错误的响应读写器的命令; 电子标签的工作状态发生混乱; 电子标签错误的进入休眠状态。当电子标签发出的数据发生传输错误时,如果被读写器接收到,可能导致以下结果: 不能识别正常工作的电子标签,误判电子标签的工作状态; 将一个电子标签判别为另一个电子标签,造成识别错误。三、差错控制方式四、差错控制编码定义:差错控制时所使用的编码,常称为纠错编码。根据码的用途,可分为检错码和纠错码。检错码以检错为目的,不一定能纠错;而纠错码以纠

39、错为目的,一定能检错。监督码元:在发送端需要在信息码元序列中增加一些差错控制码元,它们称为监督码元。 评价标准 多余度:就是指增加的监督码元多少。例如,若编码序列中平均每两个信息码元就添加一个监督码元,则这种编码的多余度为1/3。 编码效率(简称码率) :设编码序列中信息码元数量为k,总码元数量为n,则比值k/n 就是码率。 冗余度:监督码元数(n-k) 和信息码元数 k 之比。五、奇偶校验法常用的奇偶检验法为垂直奇偶校验、水平奇偶校验和水平垂直奇偶校验。六、循环冗余校验(CRC)CRC校验码的计算步骤如下: 设G(x)为r阶,在数据块M(x)的末尾附加r个0,则相应的多项式为 ; 按模2除法

40、用对应于G(x)的位串去除对应于 的位串; 按模2减法从对应于 的位串中减去余数(总是小于等于1)。结果就是要传送的带循环冗余校验码的数据块。下面举个例子来说明一下校验码的计算过程。 假设4位的信息位为1010,生成多项式G(x)为 ,那么G(x)的二进制表示形式就为1011,因为G(x)为3阶,所以要在数据块M(x)后面附加3个0,变成1010000。 用生成多项式G(x)1011去除1010000,可得余数为011, 所以传输的数据块为1010011。七、性能指标 射频识别系统的性能指标包括有效性、可靠性、适应性、标准型、经济性以及易维护性等等。 在射频识别系统中,识读率PR和误码率PE是

41、用户最为关心的问题。设待识读标签数为NA,正确识读的标签数为NR,每个标签的码元数为NL,读写器识读出发生错误的码元总数为NE,则:射频数据的安全性一、射频识别系统的安全分析RFID信息系统可能受到的威胁有两类:物理环境如电磁干扰、断电、设备故障等威胁;人员威胁:管理者攻击、用户攻击、前管理者的攻击、前用户攻击、外部人员攻击。攻击手段(1)主动攻击:1.获得RFID标签的实体,通过物理手段在实验室环境中去除芯片封装、使用微探针获取敏感信号、进行目标标签的重构。2.用软件利用微处理器的通用接口,扫描RFID标签和响应阅读器的探寻,寻求安全协议加密算法及其实现弱点,从而删除或篡改标签内容。3.通过

42、干扰广播、阻塞信道或其他手段,产生异常的应用环境,使合法处理器产生故障,拒绝服务器攻击等。(2)被动攻击1.采用窃听技术,分析微处理器正常工作过程中产生的各种电磁特征,获得RFID标签和阅读器之间的通信数据。Eg:美国某大学教授和学生利用定向天线和数字示波器监控RFID标签被读取时的功率消耗,通过监控标签的能耗过程从而推导出了密码。根据功率消耗模式可以确定何时标签接收到了正确或者不正确的密码位。二、密码学技术原理常见的密码算法体制有对称密码体制和非对称密码体制两种。对称密码体制从得到的密文序列的结构来划分,有序列密码和分组密码两种不同的密码体制三、射频识别系统的加密机制在射频识别应用系统上主要

43、采用三种传输信息保护方式, 认证传输方式:不保密,纠错 加密传输方式:保密,不纠错 和混合传输方式:保密,纠错30 、RFID超高频的频率范围为:(A)A 3-30GHZ B 1-2GHZ C 2-3GHZ D 6GHZ以上31、根据射频标签工作方式分为(A)、被动式、半被动式三种类型。 A、主动式 B、中读式 C、一次性编程只读式 D、可重复编程只读式 32、射频识别(RFID)是物联网的关键技术之一,RFID标签又称为电子标签,关于电子标签与条型码标签的描述,(D)是正确的。 电子标签建置成本低,多个标签可被同时读取。 条型码标签容量小,但难以被复制。 电子标签通讯距离短,但对环境变化有较

44、高的忍受能力。 电子标签容量大,可同时读取多个标签并且难以被复制。33、按照RSA 算法,若选两奇数p=5,q=3,公钥e=7,则私钥d 为(B) 。A6 B7 C8 D934、 RFID技术作为一项先进的自动识别和数据采集技术,被公认为21世纪十大重要技术之一,已经成功应用到生产制造,物流管理、公共安全等各个领域,RFID在发展过程中遇到了很多问题,下面哪一项不是(A )A、标准的不统一B、隐私权问题、安全问题C、成本问题、就业问题D、自动识别技术不成熟35、射频识别标准大致包括哪几类( A),其中编码标准和通信协议(通讯接口)是争夺得比较激烈的部分,他们也构成了RFID标准的核心,技术标准(如符合、射频识别技术、IC卡标准等)数据内容标准(如编码格式、语法标准等)一致性标准(如印刷质量、测试规格等标准)应用标准(如船运标签、产品包装标签等)A、B、C、D、36、 电子标签正常工作所需要的能量全部是由阅读器供给的,这一类电子标签称为。BA、有源标签B、无源标签C、半有源标签D、半无源标签 37、 RFID信息系统可能受到的威胁有两类:一类是物理环境威胁,

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 家庭教育

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁