《直角三角形等腰直角三角形斜边直线专题 (韩).doc》由会员分享,可在线阅读,更多相关《直角三角形等腰直角三角形斜边直线专题 (韩).doc(26页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、精品文档,仅供学习与交流,如有侵权请联系网站删除直角三角形、斜边中线、等腰直角三角形专题一、直角三角形的性质1一块直角三角板放在两平行直线上,如图,1+2=度2如图,ABC中,BAC=90,ADBC,ABC的平分线BE交AD于点F,AG平分DAC,求证:BAD=C;AEF=AFE;AGEF3如图所示,在ABC中,CD,BE是两条高,那么图中与A相等的角有 4如图,已知ABC中,ABAC,BE、CF都是ABC的高,P是BE上一点且BP=AC,Q是CF延长线上一点且CQ=AB,连接AP、AQ、QP,求证:APQ是等腰直角三角形二、含30角的直角三角形的性质5在RtABC中,ACB=60,DE是斜边
2、AC的中垂线,分别交AB、AC于D、E两点若BD=2,求AD的长 6如图,AOP=BOP=15,PCOA交OB于C,PDOA于D,若PC=6,求PD的长 7如图所示,矩形ABCD中,AB=AD,E为BC上的一点,且AE=AD,求EDC的度数 8如图,ABC为等边三角形,点D为BC边上的中点,DFAB于点F,点E在BA的延长线上,且ED=EC,若AE=2,求AF的长 9如图所示,已知1=2,AD=BD=4,CEAD,2CE=AC,求CD的长 10如图,在RtABC中,ACB=90,B=30,AD平分BAC,DEAB于E,求证:(1)CD=DE;(2)AC=BE;(3)BD=2CD; 三、 直角三
3、角形斜边中线问题11如图,在ABC中A=60,BMAC于点M,CNAB于点N,P为BC边的中点,连接PM,PN,求证:PMN为等边三角形; 12已知锐角ABC中,CD,BE分别是AB,AC边上的高,M是线段BC的中点,连接DM,EM(1)若DE=3,BC=8,求DME的周长;(2)若A=60,求证:DME=60;(3)若BC2=2DE2,求A的度数13如图,在ABC中,D是BC上一点,AB=AD,E、F分别是AC、BD的中点,EF=2,求AC的长 14如图,在ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PEAB于E,PFAC于F,M为EF中点,求AM的最小值 15如图,在AB
4、C中,ACB=90,B=20,D在BC上,AD=BD,E为AB的中点,AD、CE相交于点F,求DFE等于多少 16如图,在RtABC中,ACB=90,将边BC沿斜边上的中线CD折叠到CB,若B=50,求ACB=17如图,ABC中,AB=AC,D为AB中点,E在AC上,且BEAC,若DE=5,AE=8,求BC的长度 18 如图,在平行四边形ABCD中,以AC为斜边作RtACE,又BED=90求证:AC=BD19已知:如图,在RtABC中,ACB=90,点M是AB边的中点,CHAB于点H,CD平分ACB(1)求证:1=2(2)过点M作AB的垂线交CD延长线于E,求证:CM=EM;(3)AEB是什么
5、三角形?证明你的猜想20如图,已知在ABC中,延长CA到D,使BA=BD,延长BA到E,使CA=CE,设P、M、N分别是BC、AD、AE的中点求证:PMN是等腰三角形四、等腰直角三角形问题21如图,ACB、CDE为等腰直角三角形,CAB=CDE=90,F为BE的中点,求证:AFDF,AF=DF22已知等腰直角三角形ABC中,CD是斜边AB上的高,AE平分CAB交CD于E,在DB上取点F,使DF=DE,求证:CF平分DCB23如图,OBD和OCA是等腰直角三角形,ODB=OCA=90M是线段AB中点,连接DM、CM、CD若C在直线OB上,试判断CDM的形状24如图,已知点D在AC上,ABC和AD
6、E都是等腰直角三角形,点M为EC的中点(1)求证:BMD为等腰直角三角形;(2)将图中的ADE绕点A逆时针旋转45,如图所示,则(1)题中的结论“BMD为等腰直角三角形”是否仍然成立?请说明理由25已知:如图ABC中,A=90,AB=AC,D是斜边BC的中点,E,F分别在线段AB,AC上,且EDF=90(1)求证:DEF为等腰直角三角形;(2)求证:S四边形AEDF=SBDE+SCDF;(3)如果点E运动到AB的延长线上,F在射线CA上且保持EDF=90,DEF还仍然是等腰直角三角形吗?请画图说明理由26ABC中,ABC=45,ABBC,BEAC于点E,ADBC于点D(1)如图1,作ADB的角
7、平分线DF交BE于点F,连接AF求证:FAB=FBA;(2)如图2,连接DE,点G与点D关于直线AC对称,连接DG、EG依据题意补全图形;用等式表示线段AE、BE、DG之间的数量关系,并加以证明27如图,在ABC中,ACB=90,AC=BC,D为BC中点,DEAB,垂足为点E,过点B作BFAC交DE的延长线于点F,连接CF、AF、AD,AD与CF交于点G(1)求证:ACDCBF;(2)AD与CF的关系是;(3)求证:ACF是等腰三角形;(4)ACF可能是等边三角形吗?(填“可能”或“不可能”)直角三角形斜边中线等腰直角三角形专题参考答案与试题解析1【解答】解:如图,1=3,2=4(对顶角相等)
8、,3+4=90,1+2=90故答案为:90【点评】本题考查了直角三角形两锐角互余的性质,对顶角相等,熟记性质是解题的关键2如图,ABC中,BAC=90,ADBC,ABC的平分线BE交AD于点F,AG平分DAC,给出下列结论:BAD=C;AEF=AFE;EBC=C;AGEF其中正确的结论是()ABCD【分析】根据同角的余角相等求出BAD=C,再根据等角的余角相等可以求出AEF=AFE;根据等腰三角形三线合一的性质求出AGEF【解答】解:BAC=90,ADBC,C+ABC=90,BAD+ABC=90,BAD=C,故正确;BE是ABC的平分线,ABE=CBE,ABE+AEF=90,CBE+BFD=9
9、0,AEF=BFD,又AFE=BFD(对顶角相等),AEF=AFE,故正确;ABE=CBE,只有C=30时EBC=C,故错误;AEF=AFE,AE=AF,AG平分DAC,AGEF,故正确综上所述,正确的结论是故选C【点评】本题考查了直角三角形的性质,等腰三角形三线合一的性质,同角的余角相等的性质以及等角的余角相等的性质,熟记各性质并准确识图理清图中各角度之间的关系是解题的关键3如图所示,在ABC中,CD,BE是两条高,那么图中与A相等的角的个数有()A1个B2个C3个D4个【分析】根据已知条件CD,BE是两条高可知:A+DCA=90,ABE+BHD=90,A+ABE=90,CHE+HCE=90
10、,再根据同角的余角相等即可得到答案【解答】解:CDAB,CDA=BDH=90,A+DCA=90,ABE+BHD=90,BEAC,A+ABE=90,CHE+HCE=90,A=BHD=CHE,故选:B【点评】此题主要考查了直角三角形的性质,关键是根据垂直得到有哪些角互余4如图,已知ABC中,ABAC,BE、CF都是ABC的高,P是BE上一点且BP=AC,Q是CF延长线上一点且CQ=AB,连接AP、AQ、QP,判断APQ的形状【分析】利用BE、CF都是ABC的高,求证1=2,然后求证ACQPBA,利用AQ=AP,AQAP,即可证明APQ是等腰直角三角形【解答】解:APQ是等腰直角三角形BE、CF都是
11、ABC的高,1+BAE=90,2+CAF=90(同角(可等角)的余角相等)1=2又AC=BP,CQ=AB,在ACQ和PBA中ACQPBAAQ=AP,CAQ=BPA=3+90QAP=CAQ3=90AQAPAPQ是等腰直角三角形【点评】此题考查学生对全等三角形的判定和性质和等腰直角三角形的理解和掌握,难度不大,属于基础题5(2016秋泰山区期中)在RtABC中,ACB=60,DE是斜边AC的中垂线,分别交AB、AC于D、E两点若BD=2,则AD的长是()A3B4C5D4.5【分析】根据直角三角形的性质求出A的度数,根据线段垂直平分线的性质得到DA=DC,解答即可【解答】解:ACB=60,B=90,
12、A=30,DE是斜边AC的中垂线,DA=DC,ACD=A=30,BD=2,AD=4,故选B【点评】本题考查的是线段垂直平分线的性质、直角三角形的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键6(2016秋大丰市月考)如图,AOP=BOP=15,PCOA交OB于C,PDOA于D,若PC=6,则PD等于()A4B3C2D1【分析】过点P作PEOB于E,根据两直线平行,内错角相等可得AOP=COP,然后利用三角形的一个外角等于与它不相邻的两个内角的和求出PCE=AOB=30,再根据直角三角形30角所对的直角边等于斜边的一半解答【解答】解:如图,过点P作PEOB于E,PCOA,
13、AOP=COP,PCE=BOP+COP=BOP+AOP=AOB=30,又PC=6,PE=PC=3,AOP=BOP,PDOA,PD=PE=3,故选B【点评】本题考查了直角三角形30角所对的直角边等于斜边的一半,三角形的一个外角等于与它不相邻的两个内角的和的性质,以及平行线的性质,作辅助线构造出含30的直角三角形是解题的关键7(2015春兰溪市期末)如图所示,矩形ABCD中,AB=AD,E为BC上的一点,且AE=AD,则EDC的度数是()A30B75C45D15【分析】根据矩形性质得出C=ABC=90,AB=CD,DCAB,推出AE=2AB,得出AEB=30=DAE,求出EDC的度数,即可求出答案
14、【解答】解:四边形ABCD是矩形,C=ABC=90,AB=CD,DCAB,AB=AD,E为BC上的一点,且AE=AD,AE=2AB,AEB=30,ADBC,AEB=DAE=30,AE=AD,ADE=AED=(180EAD)=75,ADC=90,EDC=9075=15,故选D【点评】本题考查了矩形性质,三角形的内角和定理,平行线性质,等腰三角形的性质,含30度角的直角三角形性质的应用,解此题的关键是求出ABC和EBA的度数,题目比较好,是一道综合性比较强的题目8(2013春重庆校级期末)如图,ABC为等边三角形,点D为BC边上的中点,DFAB于点F,点E在BA的延长线上,且ED=EC,若AE=2
15、,则AF的长为()AB2C+1D3【分析】过点E作EHAC交BC的延长线于H,证明ABH是等边三角形,求出CH,得到BD的长,根据直角三角形的性质求出BF,计算即可【解答】解:过点E作EHAC交BC的延长线于H,H=ACB=60,又B=60,EBH是等边三角形,EB=EH=BH,CH=AE=2,ED=EC,EDC=ECD,又B=H,BED=HEC,在BED和HEC中,BEDHEC,BD=CH=2,BA=BC=4,BF=BD=1,AF=3故选:D【点评】本题考查的是等边三角形的性质、直角三角形的性质以及等腰三角形的性质,掌握直角三角形中,30角所对的直角边等于斜边的一半、等边三角形的三个角都是6
16、0是解题的关键9(2012春古冶区校级期中)如图所示,已知1=2,AD=BD=4,CEAD,2CE=AC,那么CD的长是()A2B3C1D1.5【分析】在RtAEC中,由于=,可以得到1=2=30,又AD=BD=4,得到B=2=30,从而求出ACD=90,然后由直角三角形的性质求出CD【解答】解:在RtAEC中,=,1=2=30,AD=BD=4,B=2=30,ACD=180303=90,CD=AD=2故选A【点评】本题利用了:(1)直角三角形的性质;(2)三角形内角和定理;(3)等边对等角的性质10(2012秋包河区期末)如图,在RtABC中,ACB=90,B=30,AD平分BAC,DEAB于
17、E,以下结论(1)CD=DE;(2)AC=BE;(3)BD=2CD;(4)DE=AC中,正确的有()A1个B2个C3个D4个【分析】根据角平分线的性质可得CD=DE,AC=BE,结合含30角的直角三角形的性质可得BD=2CD,而AC和BD不一定相等,所以可得出答案【解答】解:ACB=90,B=30,AD平分BAC,DEAB,DC=DE,ADC=ADE=60,AD平分CDE,AC=AE,在RtBDE中,B=30,BD=2DE=2CD,在RtADE中,DE=AE=AC,正确的有(1)、(2)、(3),故选C【点评】本题主要考查角平分线的性质及含30角的直角三角形的性质,掌握角平分线上的点到角两边的
18、距离相等是解题的关键11(2015秋江阴市期中)如图,在ABC中A=60,BMAC于点M,CNAB于点N,P为BC边的中点,连接PM,PN,则下列结论:PM=PN;PMN为等边三角形;下面判断正确是()A正确B正确C都正确D都不正确【分析】根据直角三角形斜边上的中线等于斜边的一半可判断正确;根据直角三角形两锐角互余的性质求出ABM=ACN=30,再根据三角形的内角和定理求出BCN+CBM=60,然后根据三角形的一个外角等于与它不相邻的两个内角的和求出BPN+CPM=120,从而得到MPN=60,又由得PM=PN,根据有一个角是60的等腰三角形是等边三角形可判断正确【解答】解:BMAC于点M,C
19、NAB于点N,P为BC边的中点,PM=BC,PN=BC,PM=PN,正确;A=60,BMAC于点M,CNAB于点N,ABM=ACN=30,在ABC中,BCN+CBM18060302=60,点P是BC的中点,BMAC,CNAB,PM=PN=PB=PC,BPN=2BCN,CPM=2CBM,BPN+CPM=2(BCN+CBM)=260=120,MPN=60,PMN是等边三角形,正确;所以都正确故选:C【点评】本题主要考查了直角三角形30角所对的直角边等于斜边的一半的性质,等边三角形的判定与性质,熟练掌握性质是解题的关键12已知锐角ABC中,CD,BE分别是AB,AC边上的高,M是线段BC的中点,连接
20、DM,EM(1)若DE=3,BC=8,求DME的周长;(2)若A=60,求证:DME=60;(3)若BC2=2DE2,求A的度数【分析】(1)根据直角三角形斜边上中线性质求出DM=BC=4,EM=BC=4,即可求出答案;(2)根据三角形内角和定理求出ABC+ACB=120,根据直角三角形斜边上中线性质求出DM=BM,EM=CM,推出ABC=BDM,ACB=CEM,根据三角形内角和定理求出即可;(3)求出EM=EN,解直角三角形求出EMD度数,根据三角形的内角和定理求出即可【解答】解:(1)CD,BE分别是AB,AC边上的高,BDC=BEC=90,M是线段BC的中点,BC=8,DM=BC=4,E
21、M=BC=4,DME的周长是DE+EM+DM=3+4+4=11;(2)证明:A=60,ABC+ACB=120,BDC=BEC=90,M是线段BC的中点,DM=BM,EM=CM,ABC=BDM,ACB=CEM,EMC+DMB=ABC+ACB=120,DME=180120=60;(3)解:过M作MNDE于N,DM=EM,EN=DN=DE,ENM=90,EM=DM=BC,DN=EN=DE,BC2=2DE2,(2EM)2=2(2EN)2,EM=EN,sinEMN=,EMN=45,同理DMN=45,DME=90,DMB+EMC=18090=90,ABC=BDM,ACB=CEM,ABC+ACB=(180D
22、MB+180EMC)=135,BAC=180(ABC+ACB)=45【点评】本题考查了等腰三角形的判定和性质,三角形的内角和定理,解直角三角形的性质,直角三角形斜边上中线性质的应用,能综合运用性质进行推理是解此题的关键,本题综合性比较强,有一定的难度,注意:直角三角形斜边上的中线等于斜边的一半13(2014春永川区校级期中)如图,在ABC中,D是BC上一点,AB=AD,E、F分别是AC、BD的中点,EF=2,则AC的长是()A3B4C5D6【分析】连结AF由AB=AD,F是BD的中点,根据等腰三角形三线合一的性质得出AFBD再根据直角三角形斜边上的中线等于斜边的一半求得AC=2EF=4【解答】
23、解:如图,连结AFAB=AD,F是BD的中点,AFBD在RtACF中,AFC=90,E是AC的中点,EF=2,AC=2EF=4故选B【点评】本题考查了直角三角形斜边上的中线的性质:在直角三角形中,斜边上的中线等于斜边的一半利用等腰三角形三线合一的性质得出AFBD是解题的关键14(2011秋姜堰市期末)如图,在ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PEAB于E,PFAC于F,M为EF中点,则AM的最小值为()A2B2.4C2.6D3【分析】先求证四边形AFPE是矩形,再根据直线外一点到直线上任一点的距离,垂线段最短,利用相似三角形对应边成比例即可求得AP最短时的长,然后即
24、可求出AM最短时的长【解答】解:连结AP,在ABC中,AB=6,AC=8,BC=10,BAC=90,PEAB,PFAC,四边形AFPE是矩形,EF=APM是EF的中点,AM=AP,根据直线外一点到直线上任一点的距离,垂线段最短,即APBC时,AP最短,同样AM也最短,当APBC时,ABPCBA,AP最短时,AP=4.8当AM最短时,AM=2.4故选B【点评】此题主要考查学生对相似三角形判定与性质、垂线段最短和直角三角形斜边上的中线的理解和掌握,此题涉及到动点问题,有一定的拔高难度,属于中档题15(2010武隆县模拟)如图,在ABC中,ACB=90,B=20,D在BC上,AD=BD,E为AB的中
25、点,AD、CE相交于点F,DFE等于()A40B50C60D70【分析】根据已知得,BAC=70,BAD=B,再根据直角三角形斜边上的中线等于斜边的一半,得出ECB=B,从而得出ACE,再由三角形的内角和定理得AFC,根据对顶角相等求出答案【解答】解:ACB=90,B=20,BAC=70,AD=BD,BAD=B=20,DAC=50,E为AB的中点,BE=CE,ECB=B=20,ACE=70,在ACF中,ACF+AFC+FAC=180,AFC=60,DFE=AFC=60(对顶角相等),故选C【点评】本题考查了等腰三角形的性质、直角三角形斜边上的中线等于斜边的一半,是基础知识要熟练掌握16(201
26、6江岸区模拟)如图,在RtABC中,ACB=90,将边BC沿斜边上的中线CD折叠到CB,若B=50,则ACB=10【分析】根据三角形内角和定理求出A的度数,根据直角三角形的性质分别求出BCD、DCA的度数,根据翻折变换的性质求出BCD的度数,计算即可【解答】解:ACB=90,B=50,A=40,ACB=90,CD是斜边上的中线,CD=BD,CD=AD,BCD=B=50,DCA=A=40,由翻折变换的性质可知,BCD=BCD=50,ACB=BCDDCA=10,故答案为:10【点评】本题考查的是直角三角形的性质、翻折变换的性质,掌握在直角三角形中,斜边上的中线等于斜边的一半是解题的关键17(201
27、6秋嵊州市期末)如图,ABC中,AB=AC,D为AB中点,E在AC上,且BEAC,若DE=5,AE=8,则BC的长度为2【分析】由BEAC,D为AB中点,DE=5,根据直角三角形斜边的中线等于斜边的一半,即可求得AB的长,然后由勾股定理求得BC的长【解答】解:BEAC,AEB=90,D为AB中点,AB=2DE=25=10,AE=8,BE=6BC=2,故答案为:2【点评】此题考查了直角三角形斜边上的中线的性质以及勾股定理注意掌握直角三角形斜边的中线等于斜边的一半定理的应用是解此题的关键18如图,在平行四边形ABCD中,以AC为斜边作RtACE,又BED=90求证:AC=BD【分析】连接EO,首先
28、根据平行四边形的性质可得AO=CO,BO=DO,即O为BD和AC的中点,在RtAEC中EO=AC,在RtEBD中,EO=BD,进而得到AC=BD,再根据对角线相等的平行四边形是矩形可证出结论【解答】证明:连接EO,四边形ABCD是平行四边形,AO=CO,BO=DO,在RtEBD中,O为BD中点,EO=BD,在RtAEC中,O为AC中点,EO=AC,AC=BD【点评】此题主要考查了平行四边形的性质,直角三角形斜边上的中线,关键是掌握直角三角形斜边上的中线等于斜边的一半19已知:如图,在RtABC中,ACB=90,点M是AB边的中点,CHAB于点H,CD平分ACB(1)求证:1=2(2)过点M作A
29、B的垂线交CD延长线于E,求证:CM=EM;(3)AEB是什么三角形?证明你的猜想【分析】(1)根据直角三角形斜边上的中线等于斜边的一半得到AM=CM=BM,由等腰三角形到性质得到CAB=ACM,由余角的性质得到CAB=BCH,等量代换得到BCH=ACM,根据角平分线的性质得到ACD=BCD,即可得到结论;(2)根据EMAB,CHAB,得到EMAB,由平行线的性质得到HCD=MED,由于HCD=MCD,于是得到MCD=MED,即可得到结论;(3)根据 CM=EM AM=CM=BM,于是得到EM=AM=BM,推出AEB是直角三角形,由于 EM垂直平分AB,得到EA=EB于是得到结论【解答】证明:
30、(1)RtABC中,ACB=90,M是AB边的中点,AM=CM=BM,CAB=ACM,CAB=90ABC,CHAB,BCH=90ABC,CAB=BCH,BCH=ACM,CD平分ACB,ACD=BCD,ACDACM=BCDBCH,即1=2;(2)EMAB,CHAB,EMCH,HCD=MED,HCD=MCD,MCD=MED,CM=EM;(3)AEB是等腰直角三角形,CM=EM AM=CM=BM,EM=AM=BM,AEB是直角三角形,EM垂直平分AB,EA=EB,AEB是等腰三角形,AEB是等腰直角三角形【点评】本题考查了直角三角形斜边上的中线等于斜边的一半,等腰直角三角形的判定和性质,角平分线的定
31、义,线段垂直平分线的性质,等腰三角形的性质,熟练掌握各定理是解题的关键20如图,已知在ABC中,延长CA到D,使BA=BD,延长BA到E,使CA=CE,设P、M、N分别是BC、AD、AE的中点求证:PMN是等腰三角形【分析】连接BM、CN,根据等腰三角形三线合一得到BMC=90,根据直角三角形的性质得到MP=BC,同理NP=BC,得到答案【解答】证明:连接BM、CN,BA=BD,DM=MA,BMAD,BMC=90,又BP=PC,MP=BC,同理,NP=BC,MP=NP,PMN是等腰三角形【点评】本题考查的是直角三角形的性质和等腰三角形的性质,掌握直角三角形斜边上的中线等于斜边的一半、等腰三角形
32、三线合一是解题的关键21如图,ACB、CDE为等腰直角三角形,CAB=CDE=90,F为BE的中点,求证:AFDF,AF=DF【分析】根据直角三角形斜边上的中线等于斜边的一半可得AF=BF=AE,DF=BF=AE,再根据等边对等角可得ABF=BAF,DBF=BDF,然后根据三角形的一个外角等于与它不相邻的两个内角的和求出AFD=2ABC,再根据等腰直角三角形的性质求解即可【解答】证明:CAB=CDE=90,F为BE的中点,AF=BF=AE,DF=BF=AE,AF=DF,ABF=BAF,DBF=BDF,由三角形的外角性质得,AFD=ABF+BAF+DBF+BDF=2ABC,ABC是等腰直角三角形
33、,ABC=45,AFD=90,AFDF,综上所述,AFDF,AF=DF【点评】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,等腰直角三角形的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质是解题的关键22已知等腰直角三角形ABC中,CD是斜边AB上的高,AE平分CAB交CD于E,在DB上取点F,使DF=DE,求证:CF平分DCB【分析】延长FE交AC于点G,利用角平分线的性质可知EG=ED,然后证明CEGFED,得出CE=FE,利用等腰三角形的性质,平行线的性质即可求出ECF=BCF【解答】解:延长FE交AC于点G,DE=DF,CD是斜边AB上的高,DEF=45,D
34、CB=45,EFBC,EFC=FCB,CGF=90,AE平分CAB,CGF=BDC=90,GE=DE,在CGE与FDE中,CGEFDE(ASA),CE=FE,ECF=EFC,ECF=BCF,CF平分DCB【点评】本题考查等腰三角形的性质,涉及全等三角形的性质与判定,等腰直角三角形的性质,平行线的判定与性质等知识点,综合程度较高23如图,OBD和OCA是等腰直角三角形,ODB=OCA=90M是线段AB中点,连接DM、CM、CD若C在直线OB上,试判断CDM的形状【分析】由OBD和OCA是等腰直角三角形得到ACB=ADB=90,OBD=45,由M为AB的中点,根据直角三角形斜边上的中线性质得到DM
35、=AM=BM,CM=AM=BM,则CM=DM,MBD=MDB,MCB=MBC,理由三角形外角性质得AMD=2MBD,AMC=2MBC,则AMDAMC=2(MBDMBC)=2OBD=90,于是可得到CDM为等腰直角三角形【解答】解:CDM为等腰直角三角形理由如下:OBD和OCA是等腰直角三角形,ACB=ADB=90,OBD=45,而M为AB的中点,DM=AM=BM,CM=AM=BM,CM=DM,MBD=MDB,MCB=MBC,AMD=2MBD,AMC=2MBC,AMDAMC=2(MBDMBC)=2OBD=90,即CMD=90,CM=DM,CDM为等腰直角三角形同理可得:第2个图中CDM为等腰直角
36、三角形【点评】本题考查了等腰直角三角形的性质和直角三角形斜边上的中线性质、三角形外角的性质,灵活利用直角三角形的斜边上的中线的性质是关键24(2010渝中区模拟)如图,已知点D在AC上,ABC和ADE都是等腰直角三角形,点M为EC的中点(1)求证:BMD为等腰直角三角形;(2)将图中的ADE绕点A逆时针旋转45,如图所示,则(1)题中的结论“BMD为等腰直角三角形”是否仍然成立?请说明理由【分析】(1)根据直角三角形斜边上的中线等于斜边的一半,求出BM=EN=MC,DM=EM=MC,然后根据等边对等角的性质可以证明BMD=90,所以BMD为等腰直角三角形;(2)延长DM交BC于N,先根据EDB
37、=ABC=90证明EDBC,然后根据两直线平行,内错角相等求出DEM=MCN,从而证明EDM与MNC全等,根据全等三角形对应边相等可得DM=MN,然后即可证明BMDM,且BM=DM【解答】(1)证明:点M是RtBEC的斜边EC的中点,BM=EC=MC,MBC=MCBBME=2BCM(2分)同理可证:DM=EC=MC,EMD=2MCDBMD=2BCA=90,(4分)BM=DMBMD是等腰直角三角形(5分)(2)(1)题中的结论仍然成立理由:延长DM与BC交于点N,(6分)DEAB,CBAB,EDB=CBD=90,DEBCDEM=MCN又EMD=NMC,EM=MC,EDMMNC(8分)DM=MND
38、E=NC=AD又AB=BC,ABAD=BCCN,BD=BNBMDM即BMD=90(9分)ABC=90,BM=DN=DMBMD是等腰直角三角形(10分)【点评】本题主要考查了全等三角形的判定与性质,直角三角形斜边上的中线等于斜边的一半的性质,熟练掌握判定定理及性质并灵活运用是解题的关键,难度中等25(2011秋昌平区校级期中)已知:如图ABC中,A=90,AB=AC,D是斜边BC的中点,E,F分别在线段AB,AC上,且EDF=90(1)求证:DEF为等腰直角三角形;(2)求证:S四边形AEDF=SBDE+SCDF;(3)如果点E运动到AB的延长线上,F在射线CA上且保持EDF=90,DEF还仍然
39、是等腰直角三角形吗?请画图说明理由【分析】(1)连接AD,根据等腰直角三角形的性质可得ADBC,AD=BD,1=45,从而得到1=B,再根据同角的余角相等求出2=4,然后利用“AAS”证明BDE和ADF全等,根据全等三角形对应边相等可得DE=DF,从而得证;(2)同理求出ADE和CDF全等,根据全等三角形的面积相等即可得证;(3)依然成立,连接AD,根据等腰直角三角形的性质可得AD=BD,CAD=45,再根据等角的补角相等求出DAF=DBE,然后利用“AAS”证明BDE和ADF全等,根据全等三角形对应边相等可得DE=DF,从而得证【解答】(1)证明:如图,连接AD,A=90,AB=AC,D是斜
40、边BC的中点,ADBC,AD=BD,1=45,1=B=45,EDF=90,2+3=90,又3+4=90,2=4,在BDE和ADF中,BDEADF(ASA),DE=DF,又EDF=90,DEF为等腰直角三角形;(2)解:同理可证,ADECDF,所以,S四边形AEDF=SADF+SADE=SBDE+SCDF,即S四边形AEDF=SBDE+SCDF;(3)解:仍然成立如图,连接AD,BAC=90,AB=AC,D是斜边BC的中点,ADBC,AD=BD,1=45,DAF=1801=18045=135,DBE=180ABC=18045=135,DAF=DBE,EDF=90,3+4=90,又2+3=90,2=4,在BDE和ADF中,BDEADF(ASA),DE=DF,又EDF=90,DEF为等腰直角三角形【点评】本题考查了等腰直角三角形的性质,全等三角形判定与性质,作辅助线构造出全等三角形是解题的关键26(2016汕头校级自主招生)ABC中,ABC=45,ABBC,BEAC于点E,ADBC于点D(1)如图1,作ADB的角平分线DF交BE于点F,连接AF求证:FAB=FBA;(2)如图2,连接DE,点G与点D关于直线AC对称,连接DG、EG依据题意补全图形;用等式表示线段AE、BE、DG之间的数量关系,并加以证明【分析】(1)欲证明FAB=FBA,由ADFBDF推出AF=BF即可解