《变压器故障检测技术--典型故障分析.doc》由会员分享,可在线阅读,更多相关《变压器故障检测技术--典型故障分析.doc(33页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、精品文档,仅供学习与交流,如有侵权请联系网站删除毕业设计题目:变压器故障检测技术-典型故障分析系别:电气系专业:班级:姓名:学号:指导老师: 变压器故障检测技术-典型故障分析摘要 电力变压器故障检测主要有电气量检测和化学检测方法。化学检测主要是通过变压器油中特征气体的含量、产气速率和三比值法进行分析判断,它对变压器的潜伏性故障及故障发展程度的早期发现具有有效性。具体应用中要根据故障或缺陷的不同发展阶段,采用不同的分析方法,结合设备的实际运行状况及外部电气试验数据,充分发挥油化学检测的灵敏性,正确评判设备状况或制定针对性的检修策略。实际应用过程中,为了更准确的诊断变压器的内部故障,色谱分析应根据
2、设备历史运行状况、特征气体的含量等采用不同的分析模型确定设备运行是否属于正常或存在潜伏性故障以及故障类别。电力变压器是一种改变交流电压大小静止的电力设备,是电力系统中核心设备之一,在电能的传输和配送过程中,电力变压器是能量转换、传输的核心,是国民经济各行各业和千家万户能量来源的必经之路。如果变压器发生故障,将影响电力系统的安全稳定运行电力系统中很重要的设备,一旦发生事故,将造成很大的经济损失。分析各种电力变压器事故,找出原因,总结出处理事故的办法,把事故损失控制在最小范围内,尽量减少对系统的损害。由于每台变压器负荷大小、冷却条件及季节不同,运行中不仅要以上层油温允许值为依据,还应根据以往运行经
3、验及在上述情况下与上次的油温比较。如油温突然增高,则应检查冷却装置是否正常,油循环是否破坏等,来判断变压器内部是否有故障。变压器的安全运行管理工作是我们日常工作的重点,通过对变压器的异常运行情况、常见故障分析的经验总结,将有利于及时、准确判断故障原因、性质,及时采取有效措施,确保设备的安全运行变压器是输配电系统中极其重要的电器设备,根据运行维护管理规定变压器必须定期进行检查,以便及时了解和掌握变压器的运行情况,及时采取有效措施,力争把故障消除在萌芽状态之中,从而保障变压器的安全运行。现根据对变压器的运行、维护管理经验。关键词:变压器故障检测色谱分析目录摘要1电力变压器的内部故障类型.11.1过
4、热性故障. 11.2放电性故障.11.3变压器绝缘受潮.12色谱分析诊断的基本程序.22.1变压器故障的油中气体色谱检测.22.2特征气体的含量.32.3根据气体含量变化分析判断. 33油中主要气体含量故障分析方法. .53.1变压器的注意值.53.2不超过注意值.53.3应用举例. 64故障产气速率判断法.84.1不超过注意值.84.2根据产气速率判断故障的方法.85根据三比值法分析判断法.10 5.1三比值判断法.105.2应用举. 106在线监测技术.11 6.1油中溶解性气体分析及检测.116.2局部放电在线检测技术.116.3绕组温度在线检测技术.117结束语.13参考文献.14致谢
5、.151电力变压器的内部故障类型1.1 过热性故障 是由于设备的绝缘性能恶化、油等绝缘材料裂化分解。又分为裸金属过热和固体绝缘过热两类。裸金属过热与固体绝缘过热的区别是以CO和CO2的含量为准,前者含量较低,后者含量较高。 1.2放电性故障是设备内部产生电效应(即放电)导致设备的绝缘性能恶化。又可按产生电效应的强弱分为高能放电(电弧放电)、低能量放电(火花放电)和局部放电三种。1.2.1发生电弧放电时 发生电弧放电时产生气体主要为乙炔和氢气,其次是甲烷和乙烯气体。这种故障在设备中存在时间较短,预兆又不明显,因此一般色谱法较难预测。1.2.2火花放电 是一种间歇性的放电故障。常见于套管引线对电位
6、未固定的套管导电管,均压圈等的放电;引线局部接触不良或铁心接地片接触不良而引起的放电;分接开关拨叉或金属螺丝电位悬浮而引起的放电等。产生气体主要为乙炔和氢气,其次是甲烷和乙烯气体,但由于故障能量较低,一般总烃含量不高。1.2.3局部放电 主要发生在互感器和套管上。由于设备受潮,制造工艺差或维护不当,都会造成局部放电。产生气体主要是氢气,其次是甲烷。当放电能量较高时,也会产生少量的乙炔气体。 1.3变压器绝缘受潮 变压器绝缘受潮时,其特征气体H2含量较高,而其它气体成分增加不明显。值得注意的是,芳烃含量问题。因为它具有很好的“抗析气”性能。不同牌号油含芳烃量不同,在电场作用下产生的气体量不同。芳
7、烃含量少的油“抗析气”性能较差,故在电场作用下易产生氢和甲烷,严重时还会生成蜡状物质;而芳烃含量较多的绝缘油“抗析气”性能较好,产生的氢气和甲烷就少些,因此,具体判断时要考虑这一因素的影响2 色谱分析诊断的基本程序 2.1变压器故障的油中气体色谱检测 目前,在变压器故障诊断中,单靠电气试验方法往往很难发现某些局部故障和发热缺陷,而通过变压器油中气体的色谱分析这种化学检测的方法,对发现变压器内部的某些潜伏性故障及其发展程度的早期诊断非常灵敏而有效,这已为大量故障诊断的实践所证明。 油色谱分析的原理是基于任何一种特定的烃类气体的产生速率随温度而变化,在特定温度下,往往有某一种气体的产气率会出现最大
8、值;随着温度升高,产气率最大的气体依次为CH4、C2H6、C2H4、C2H2。这也证明在故障温度与溶解气体含量之间存在着对应的关系。而局部过热、电晕和电弧是导致油浸纸绝缘中产生故障特征气体的主要原因。 变压器在正常运行状态下,由于油和固体绝缘会逐渐老化、变质,并分解出极少量的气体(主要包括氢H2、甲烷CH4、乙烷C2H6、乙烯C2H4、乙炔C2H2、一氧化碳CO、二氧化碳CO2等多种气体)。当变压器内部发生过热性故障、放电性故障或内部绝缘受潮时,这些气体的含量会迅速增加。 这些气体大部分溶解在绝缘油中,少部分上升至绝缘油的表面,并进入气体继电器。经验证明,油中气体的各种成分含量的多少和故障的性
9、质及程度直接有关。因此在设备运行过程中,定期测量溶解于油中的气体成分和含量,对于及早发现充油电力设备内部存在的潜伏性故障有非常重要的意义和现实的成效,在1997年颁布执行的电力设备预防性试验规程中,已将变压器油的气体色谱分析放到了首要的位置,并通过近些年的普遍推广应用和经验积累取得了显著的成效。 电力变压器的内部故障主要有过热性故障、放电性故障及绝缘受潮等多种类型。据有关资料介绍,在对359台故障变压器的统计表明:过热性故障占63;高能量放电故障占181;过热兼高能量放电故障占10;火花放电故障占7;受潮或局部放电故障占19。而在过热性故障中,分接开关接触不良占50;铁心多点接地和局部短路或漏
10、磁环流约占33;导线过热和接头不良或紧固件松动引起过热约占144;其余21为其他故障,如硅胶进入本体引起的局部油道堵塞,致使局部散热不良而造成的过热性故障。而电弧放电以绕组匝、层间绝缘击穿为主, 3 其次为引线断裂或对地闪络和分接开关飞弧等故障。火花放电常见于套管引线对电位末固定的套管导电管、均压圈等的放电;引线局部接触不良或铁心接地片接触不良而引起的放电;分接开关拨叉或金属螺丝电位悬浮而引起的放电等。 针对上述故障,根据色谱分析数据进行变压器内部故障诊断时,应包括:(1)分析气体产生的原因及变化。 (2)判定有无故障及故障的类型。如过热、电弧放电、火花放电和局部放电等。(3)判断故障的状况。
11、如热点温度、故障回路严重程度以及发展趋势等。(4)提出相应的处理措施。如能否继续运行,以及运行期间的技术安全措施和监视手或是否需要吊心检修等。若需加强监视,则应缩短下次试验的周期。 2.2特征气体的含量 首先看特征气体的含量。若H2、C2H2、总烃有一项大于规程规定的注意值的20%,应先根据特征气体含量作大致判断,主要的对应关系是:若有乙炔,应怀疑电弧或火花放电;氢气很大,应怀疑有进水受潮的可能;总烃中烷烃和烯烃过量而炔烃很小或无,则是过热的特征。计算产生速率,评估故障发展的快慢。通过分析的气体组分含量,进行三比值计算,确定故障类别。核对设备的运行历史,并且通过其它试验进行综合判断。2.3根据
12、气体含量变化分析判断 (1)氢气H2变化。变压器在高、中温过热时,H2一般占氢烃总量的27以下,而且随温度升高,H2的绝对含量有所增长,但其所占比例却相对下降。变压器无论是热故障还是电故障,最终都将导致绝缘介质裂解产生各种特征气体。由于碳氢键之间的键能低,生成热小,在绝缘的分解过程中,一般总是先生成H2,因此H2是各种故障特征气体的主要组成成分之一。变压器内部进水受潮是一种内部潜伏性故障,其特征气体H2含量很高。客观上如果色谱分析发现H2含量超标,而其他成分并没有增加时,可大致先判断为设备含有水分,为进一步判别,可加做微水分析。导致水分分解出H2有两种可能:一是水分和铁产生化学反应;二是在高电
13、场作用下水本身分子分解。设备受潮时固体绝缘材料含水量比油中含水量要大100多倍,而H2含量高,大多是由于油、纸绝缘内含有气体和水分,所以在现场处理设备受潮时,仅靠采用真空滤油法不能持久地降低设备中的含水量,原因在于真空滤油对于设备整体的水分影响不大。 另外,还有一种误判断的情况,如某变压器厂的产品一阶段曾连续十几台变压器油色谱中H2高达1000t2LL以上。而取相同油样分送三处外单位测试,H2含量却均正常。于是对标气进行分析,氢气峰高竟达216mm,而正常情况仅13mm左右。以上分析说明是气相色谱仪发生异常,经检查与分离柱有关,因分离柱长期使用,特别是用振荡脱气法脱气吸附了油,当吸附达到一定程
14、度,便在一定条件下释放出来,使分析发生误差,经更换分离柱后恢复正常。 (2)乙炔C2H2变化。C2H2的产生与放电性故障有关,当变压器内部发生电弧放电时,C2H2一般占总烃的20-70,H2占氢烃总量的3090,并且在绝大多数情况下,C2H4含量高于CH4。当C2H2含量占主要成分且超标时,则很可能是设备绕组短路或分接开关切换产生弧光放电所致。如果其他成分没超标,而C2H2超标且增长速率较快,则可能是设备内部存在高能量放电故障。 (3)甲烷CH4和乙烯C2H4变化。在过热性故障中,当只有热源处的绝缘油分解时,特征气体CH4和C2H4两者之和一般可占总烃的80以上,且随着故障点温度的升高,C2H
15、4所占比例也增加。 另外,丁腈橡胶材料在变压器油中将可能产生大量的CH4,丁青在变压器油中产生甲烷的本质是橡胶将本身所含的CH4释放到油中,而不是将油催化裂介为CH4。硫化丁腈橡胶在油中释放CH4的主要成分是硫化剂,其次是增塑剂、硬脂酸等含甲基的物质,而释放量取决于硫化条件。 (4)一氧化碳CO和二氧化碳CO2变化。无论何种放电形式,除了产生氢烃类气体外,与过热故障一样,只要有固体绝缘介入,都会产生CO和CO2。但从总体上来说,过热性故障的产气速率比放电性故障慢。3油中主要气体含量故障分析方法 在判断设备内有无故障时,首先将气体分析结果中的几项主要指标,(H2, CH,C2H2)与色谱分析导则
16、规定的注意值(如表1所示)进行比较。 表1正常变压器油中气,烃类气体含量的注意值3.1变压器的注意值当任一项含量超过注意值时都应引起注意。但是这些注意值不是划分设备有无故障的唯一标准,因此,不能拿“标准”死套。如有的设备因某种原因使气体含量较高,超过注意值,也不能断言判定有故障,因为可能不是本体故障所致,而是外来干扰引起的基数较高,这时应与历史数据比较,如果没有历史数据,则需要确定一个适当的检测周期进行追踪分析。又如有些气体含量虽低于注意值,但含量增长迅速时,也应追踪分析。就是说:不要以为气体含量一超过注意值就判断为故障,甚至采取内部检查修理或限制负荷等措施,是不经济的,而最终判断有无故障,是
17、把分析结果绝对值超过规定的注意值,(注意非故障性原因产生的故障气体的影响,以免误判),且产气速率又超过10%的注意值时,才判断为存在故障。 注意值不是变压器停运的限制,要根据具体情况进行判断,如果不是电路(包括绝缘)问题,可以缓停运检查。 3.2不超过注意值 若油中含有氢和烃类气体,但不超过注意值,且气体成份含量一直比较稳定,没有发展趋势,则认为变压器运行正常。 表1中注意值是根据对国内19个省市6000多台次变压器的统计而制定的,其中统计超过注意值的变压器台数占总台数的比例为5%左右。 注意油中CO、CO2含量及比值。变压器在运行中固体绝缘老化会产生CO和CO2。同时,油中CO和CO2的含量
18、既同变压器运行年限有关,也与设备结构、运行负荷和温度等因素有关,因此目前导则还不能规定统一的注意值。只是粗略的认为,开放式的变压器中,CO的含量小于300l/L,CO2/CO比值在7左右时,属于正常范围;而密封变压器中的CO2/CO比值一般低于7时也属于正常值。 3.3应用举例 济源供电公司220Kv虎岭变电站3#主变,1978年生产,1980年投运至今已运行28年,接近设备的寿命期。从2004年开始的油色谱报告分析中就存在多种气体含量超标现象,具体数据见表2表2虎岭变2#主变油色谱分析报告对上述数据跟踪分析,有不同程度乙炔、乙烯、总烃超过注意值,考虑变压器运行年限、内部绝缘老化,结合外部电气
19、检测数据,认为该变压器可继续运行,加强跟踪,缩短试验周期。目前此变压器仍在线运行。 2003年4月15日,35Kv黄河变电站1#主变预试时发现氢气含量明显增长。变压器型号为:SL7-5000KvA/35,2001年8月投运,具体色谱数据见表3:表3虎岭变1#主变油色谱分析报告分析结果:色谱分析显示氢气含量虽未超过注意值,但增长较快,为原数值的12倍,其它特征气体无明显变化,说明变压器油中有水份在电场作用下电解释放出氢气,同时对油进行电气耐压试验,击穿电压为28Kv,微水测定为80ppm,进一步验证油中有水份存在。经仔细检查发现防暴筒密封玻璃有裂纹,内有大量水锈,外部水份通过此裂纹进入变压器内部
20、。经处理后变压器油中氢气含量恢复正常。4故障产气速率判断法4.1不超过注意值 实践证明,故障的发展过程是一个渐进的过程,仅由对油中溶解的气体含量分析结果的绝对值很难确定故障的存在和严重程度。因此,为了及时发现虽未达到气体含量的注意值,但却有较快的增长速率的低能量潜伏性故障,还必须考虑故障部位的产气速率。根据GB/T72522001变压器油中溶解气体分析判断导则中推荐通过产气速率大小作为判断故障的危害程度,对分析故障性质和发展程度(包括故障源的功率、温度和面积等)具有重要的意义。当相对产气速率(每运行月某种气体含量增加值占原有起始值的百分数的平均值),总烃的产气速率大于10%时应引起注意,变压器
21、内部可能有故障存在,如大于40l/L/月可能存在严重故障。但是,对总烃起始含量很低的变压器不易采用此判据。 4.2根据产气速率判断故障的方法 总烃的绝对值小于注意值,总烃产气速率小于注意值,则变压器正常;总烃大于注意值,但不超过注意值的3倍,总烃产气速率小于注意值,则变压器有故障,但发展缓慢,可继续运行并注意观察。 总烃大于注意值,但不超过注意值的3倍,总烃产气速率为注意值的12倍,则变压器有故障,应缩短试验周期,密切注意故障发展; 总烃大于注意值的3倍,总烃产气速率大于注意值的3倍,则设备有严重故障,发展迅速,应立即采取必要的措施,有条件时可进行吊罩检修。4.2.1应用举例 2006年6月2
22、日,济源供电公司110Kv星光变1#主变投运,投运时油色谱分析报告见表4: 表41#主变投运时油色谱分析报告 投运后1个月,2006.7.21号开始跟踪,具体所测数据如下:分析结果:从7月8月份跟踪试验数据认为,特征气体含量属正常范围,产气速率较小,考虑是新投运变压器,继续跟踪运行;9月份后发现乙烯、乙炔、总烃含量超过注意值,同时产气速率超过15%,乙炔、氢气增长较快。结合投运时电气交接试验情况,此变采用ABB油气套管,且变压器出厂时虽做局部放电试验,但油气套管未进工厂是在现场组装的。 由于变压器套管直接与GIS设备连接,交接时无法进行主变局放试验。通过特征气体产生率、三比值法判断内部可能有火
23、花放电存在,怀疑高压引线与套管连接处可能存在缺陷。经常规电气试验未发现异常,放油后检查发现,套管未端屏蔽罩固定螺丝三个中有一个较松动,但无明显放电痕迹,紧固后对油进行脱气处理,主变试运至今色谱分析正常。5根据三比值法分析判断法 5.1三比值判断法 所谓的IEC三比值法实际上是罗杰斯比值法的一种改进方法。通过计算,C2H2/C2H4、CH4/H2、C2H4/C2H6的值,将选用的5种特征气体构成三对比值,对应不同的编码,分别对应经统计得出的不同故障类型。应用三比值法应当注意的问题: 对油中各种气体含量正常的变压器,其比值没有意义。 只有油中气体各成份含量足够高(通常超过注意值),气体成分浓度应不
24、小于分析方法灵敏度极限值的10倍,且经综合分析确定变压器内部存在故障后,才能进一步用三比值法分析其故障性质。如果不论变压器是否存在故障,一律使用三比值法,就有可能将正常的变压误判断为故障变压器,造成不必要的经济损失。 5.2应用举例 2006年4月30号,110Kv济源变2#主变差动、瓦斯动作跳闸,油色谱分析报告见表5:表52#主变瓦斯动作跳闸油色谱分析报告分析结果:变压器差动、瓦斯继电器同时动作,甲烷、乙烯、乙炔、氢气、总烃含量均超过注意值数倍,可直接采用三比值法判断故障类型。查编码为102,属高能放电故障,可能会出现工频续流放电、绕组之间或绕组对地之间的绝缘油发生电弧击穿、调压开关切断电源
25、等;结合外部电气试验测得B相高压绕组直流电阻不平衡率达25%,初步判断为B相绕组有严重电弧故障。吊罩检查发现B相高压绕组中性点处出现严重匝间短路,并有电弧放电痕迹,主变本体损坏严重。6在线监测技术6.1油中溶解性气体分析及检测 由于变压器3内部不同的故障会产生不同的气体,因此通过分析油中气体的成分、含量、产气率和相对百分比,可以达到对变压器绝缘情况进行诊断的目的。如H2,CO,CH4,C2H6,C2H4和C2H2常被作为分析的特征气体。 在检测出气体及成分后,用特征气体法或比值法判断变压器的内部故障。利用气相色谱法(DGA)检测绝缘油中溶解气体的含量(见图1),以此来判断充油电力设备内部故障的
26、类型及其严重程度。这种方法在技术上非常成熟,已经成功地预防了很多变压器发生严重事故。 绝缘油在热和电的作用下,能分解出H2,CO,CO2以及多种小分子烃类气体,充油电力设备内部故障的类型及其严重程度与这些气体组分及产气速率有着密切的关系。 6.2局部放电在线检测技术 变压器在内部出现故障或运行条件恶劣时会因局部场强过高而产生局部放电。放电水平及其增长率的明显变化,能够指示变压器内部正在发生的变化。但是变压器正常运行时,由于受到电网的影响,其内部的局部放电不易被检测出来,需要在其内部安装传感器进行检测。 传感器的安装。装置的原理是利用变压器绕组在特定频率范围内等值电路的特点,导出变压器绕组内部产
27、生局部放电时首末端电压(或电流)比值与放电点位置的关系,据此定出故障点位置。 变压器局部放电在线测量定位时,需要采集每一绕组的首端及末端信号并进行放大、滤波及数据处理。采用多路模拟开关接入接口电路,利用单片机进行控制和数据处理,可依次对每个变压器的每个绕组进行测量及定位。 6.3绕组温度在线检测技术 绕组温度检测主要用于监测变压器绕组的温度,给出越限报警,并在需要时启动保护跳闸。 绕组温度检测系统主要由宽带光源、耦合器、测温探头、分析仪等组成。由宽带光源发出的光束经耦合器后沿光纤进入测温探头。测温探头主要包括感温元件光纤温度传感器和配件。光纤温度传感器是物理量的变换元件,它实现温度的改变到光信
28、息的变化。光纤温度传感器的输出光信号经耦合器后进入分析仪,并由分析仪解调出变化的光信息,即可得到变化的温度数值。变压器渗漏油不仅会给电力企业带来较大的经济损失、环境污染,还会影响变压器的安全运行,可能造成不必要的停运甚至变压器的损毁事故,给电力客户带来生产上的损失和生活上的不便。因此,有必要解决变压器渗漏油问题。油箱焊缝渗油。对于平面接缝处渗油可直接进行焊接,对于拐角及加强筋连接处渗油则往往渗漏点查找不准,或补焊后由于内应力的原因再次渗漏。对于这样的渗点可加用铁板进行补焊,两面连接处,可将铁板裁成纺锤状进行补焊;三面连接处可根据实际位置将铁板裁成三角形进行补焊;该法也适用于套管电流互感器二次引
29、线盒拐角焊缝渗漏焊接。高压套管升高座或进人孔法兰渗油。这些部位主要是由于胶垫安装不合适,运行中可对法兰进行施胶密封。封堵前用堵漏胶将法兰之间缝隙堵好,待堵漏胶完全固化后,退出一个法兰紧固螺丝,将施胶枪嘴拧入该螺丝孔,然后用高压将密封胶注入法兰间隙,直至各法兰螺丝帽有胶挤出为止。低压侧套管渗漏。其原因是受母线拉伸和低压侧引线引出偏短,胶珠压在螺纹上。受母线拉伸时,可按规定对母线用伸缩节连接;如引线偏短,可重新调整引线引出长度;对调整引线有困难的,可在安装胶珠的各密封面加密封胶;为增大压紧力可将瓷质压帽换成铜质压帽。防爆管渗油。防爆管是变压器内部发生故障导致变压器内部压力过大,避免变压器油箱破裂的
30、安全措施。但防爆管的玻璃膜在变压器运行中由于振上述情况下与上次的油温比较。 3检查油质,应为透明、微带黄色,说明油质较好。油面应符合周围温度的标准线。 4变压器的声音应正常。正常运行时一般有均匀的嗡嗡电磁声,如声音有所改变,应细心检查。 5.检查油枕油面。油面均应正常,无渗漏现象,高低压套管应清洁,无裂纹,无破损及放电烧伤痕迹,螺丝是否紧固。一、二次引线不应过紧或过松,接头接触良好,呼吸器应畅通,硅胶吸潮不应达到饱和,无变色,变压器外壳和零线接地应良好。 三.事故分析1绕组故障 主要有匝间短路、绕组接地、相间短路、断线及接头开焊等。产生这些故障的原因有以下几点: 在制造或检修时,局部绝缘受到损
31、害,遗留下缺陷;在运行中因散热不良或长期过载,绕组内有杂物落入,使温度过高绝缘老化;制造工艺不良,压制不紧,机械强度不能经受短路冲击,使绕组变形绝缘损坏;绕组受潮,绝缘膨胀堵塞油道,引起局部过热 绝缘油内混入水分而劣化,或与空气接触面积过大,使油的酸价过高绝缘水平下降或油面太低,部分绕组露在空气中未能及时处理。 由于上述种种原因,在运行中一经发生绝缘击穿,就会造成绕组的短路或接地故障。匝间短路时的故障现象使变压器过热油温增高,电源侧电流略有增大,各相直流电阻不平衡,有时油中有吱吱声和咕嘟咕嘟的冒泡声。轻微的匝间短路可以引起瓦斯保护动作;严重时差动保护或电源侧的过流保护也会动作。发现匝间短路应及
32、时处理,因为绕组匝间短路常常会引起更为严重的单相接地或相间短路等故障。 2套管故障 这种故障常见的是炸毁、闪落和漏油,其原因有: 密封不良,绝缘受潮劣比,或有漏油现象;呼吸器配置不当或者吸入水分未及时处理;变压器高压侧(110kV及以上)一般使用电容套管,由于瓷质不良故而有沙眼或裂纹;电容芯子制造上有缺陷,内部有游离放电;套管积垢严重。3铁芯故障 硅钢片间绝缘损坏,引起铁芯局部过热而熔化; 夹紧铁芯的穿心螺栓绝缘损坏,使铁芯硅钢片与穿心螺栓形成短 路; 残留焊渣形成铁芯两点接地; 变压器油箱的顶部及中部,油箱上部套管法兰、桶皮及套管之间。内部铁芯、绕组夹件等因局部漏磁而发热,引起绝缘损坏。 运
33、行中变压器发生故障后,如判明是绕组或铁芯故障应吊芯检查。 首先测量各相绕组的直流电阻并进行比较,如差别较大,则为绕组故障。然后进行铁芯外观检查,再用直流电压、电流表法测量片间绝缘电阻。如损坏不大,在损坏处涂漆即可。 4瓦斯保护故障 瓦斯保护是变压器的主保护,轻瓦斯作用于信号,重瓦斯作用于跳闸。下面分析瓦斯保护动作的原因及处理方法: 瓦斯保护动作的原因可能是因滤油、加油和冷却系统不严密,致使 空气进入变压器; 因温度下降和漏油致使油位缓慢降低;或是因变压器故障而产生少 量气体; 由于发生穿越性短路故障而引起; 由于保护装置的二次回路故障所引起。 轻瓦斯保护动作后发出信号。其原因是:变压器内部有轻
34、微故障;变压器内部存在空气;二次回路故障等。运行人员应立即检查,如未发现异常现象,应进行气体取样分析。瓦斯保护动作跳闸时,可能变压器内部发生严重故障,引起油分解出大量气体,也可能二次回路故障等。出现瓦斯保护动作跳闸,应先投入备用变压器,然后进行外部检查。检查油枕防爆门,各焊接缝是否裂开,变压器外壳是否变形;最后检查气体的可燃性。 5变压器自动跳闸的处理 当运行中的变压器自动跳闸时,运行人员应迅速作出如下处理:当变压器各侧断路器自动跳闸后,将跳闸断路器的控制开关操作至 跳闸后的位置,并迅速投入备用变压器,调整运行方式和负荷分配,维持运行系统及其设备处于正常状态;检查掉牌属何种保护动作及动作是否正
35、确;了解系统有无故障及故障性质;若属以下情况并经领导同意,可不经检查试送电:人为误碰保护使 断路器跳闸;保护明显误动作跳闸;变压器仅低压过流或限时过流保护动作,同时跳闸变压器下一级设备故障而其保护却未动作,且故障已切除,但试送电只允许一次; 如属差动、重瓦斯或电流速断等主保护动作,故障时有冲击现象,则需对变压器及其系统进行详细检查,停电并测量绝缘。在未查清原因之前,禁止将变压器投入运行。必须指出,不管系统有无备用电源,也绝对不准强送变压器。6变压器着火 变压器着火也是一种危险事故,因变压器有许多可燃物质,处理不及时可能发生爆炸或使火灾扩大。 变压器着火的主要原因是:1.套管的破损和闪落,油在油
36、枕的压力下流出并在顶盖上燃烧;2.变压器内部故障使外壳或散热器破裂,使燃烧着的变压器油溢出。变压器着火,应迅速作出如下处理:1.开变压器各侧断路器,切断各侧电源,并迅速投入备用变压器,恢复供电;2.停止冷却装置运行;3.主变压器及高厂变着火时,应先解列发电机;4.若油在变压器顶盖上燃烧时,应打开下部事故放油门放油至适当位置。若变压器内部着火时,则不能放油,以防变压器发生爆炸;5.迅速用灭火装置灭火。如用干式灭火器或泡沫灭火器灭火。必要时通知消防队灭火。发生这类事故时,变压器保护应动作使断路器断开。若因故障断路器未断开,应用手动来立即断开断路器,拉开可能通向变压器电源的隔离开关。 7.分接开关故
37、障。 常见的故障是表面熔化与灼伤,相间触头放电或各接头放电。主要原因有: (1)连接螺丝松动; (2)带负荷调整装置不良和调整不当;(3)分接头绝缘板绝缘不良; (4)接头焊锡不满,接触不良,制造工艺不好,弹簧压力不足;(5)油的酸价过高,使分接开关接触面被腐蚀。 由于主变事故一般不是单一的,而是多重的、发展的,且潜在的主要故障点比较隐蔽,加上故障性质的特殊性。因而我们为了确保变压器及电网的安全稳定运行,正确处理事故,应随时掌握下列情况: 统运行方式,负荷状态,负荷种类变压器上层油温,温升与电压情况;事故发生时天气情况; 变压器周围有无检修及其他工作;运行人员有无操作;系统有无操作; 何种保护
38、动作,事故现象情况等。加强对变压器运行的巡监,做好常规的维护工作,及时地消除设备的缺陷,定期进行检修和预防性试验,尽量避免变压器事故的发生,减小事故对电网及电器设备的损害。 四.典型案例 北疆某电厂主变压器运行中出现的故障原因进行7分析研究,从而总结出在今后的运行、检修过程中要做到的一些预防措施及注意事项。 电厂简介 电厂装有四台水轮发电机组,型号为HLFN70-LJ-160,单机容量为8MW,电气主接线为扩大单元接线方式,两条110KV线路,两条l0KV直配线,两台主变压器,主变压器容量是20000KVA,额定电压121(22.5)10.5KV,额定电流是100,45A1099.71A,调压
39、方式:无载调压。 故障的原因及处理 1) 故障现象 由于主变压器运行已几年时间,需外部清扫。联系值班调度将1号主变正常停电后,由值班人员对主变外部进行常规检查和清扫。工作完成后由110KV高压侧断路器对1号主变充电,在高压侧断路器合闸的同时,电厂中控室信号屏光子牌出现了“10KV单相接地”信号,过了几分钟后又出现了“1号主变轻瓦斯动作”的信号,值班人员立即检查了10KVI段母线电压, 结果B相相电压为零,A、C两相相电压正常,而110KV母线各相电压也均正常。运行人员又对主变本体进行检查,发现变压器励磁分接开关处有像水沸腾时发出的异常声响,值班人员立刻停运了该变压器并汇报领导。 2) 处理经过
40、 检修人员首先对瓦斯继电器内的气体进行了分析,此气体为淡黄色且可燃,这说明变压器内部肯定有故障,随后对主变的分接开关进行检查发现,分接开关的位置出现变动,前一次调整的位置在+1档,而实际位置却在+1档和+2档之间。然后对主变进行了绝缘电阻、直流电阻和绝缘油的耐压、色谱分析试验,通过对比,有两项试验结果不合格,一是分接开关在+1档位的接触电阻测试不出,二是对变压器的绝缘油进行色谱分析后,绝缘油中的乙炔(C2,H2)、氢气(H2)、总烃含量均超过了规定值,根据电力设备预防性试验规程规定:C2H25PPm、H,150PPm、总烃150PPm时应引起注意。检修人员将变压器内的油放空后,进入变压器内对分
41、接开关进行检查后发现,分接开关+1档的两个触头表面有放电和少许烧伤的痕迹,对表面进行打磨处理,上好定位销后重新测试接触电阻,+1档的接触电阻为:AO=1.229、BO=1.227、CO=1228(测试温度为14),直流电阻符合规程要求。将绝缘油注入变压器,用真空滤油机对绝缘油进行了自循环过滤,重新作了绝缘油色谱分析试验,此时油中乙炔、氢气、总烃值符合标准。将变压器投运后,一切正常。过滤前后绝缘油中的气体含量见下表: 3) 原因总结 此次事故发生是由于分接开关位置变位的原因,是在前一次分按开关档位调整后,对分接开关起限位锁定的螺栓没有固定到位,值班人员在对变压器进行外部清扫时接触到分接开关调整档
42、位的圆盘,圆盘受力转动后,带动分接开关转动,故而造成分接开关的档位发生了变化。重新送电后由于分接开关的接头接触不良,所以两个触头表面产生局部放电以至引起绝缘油中的乙炔、氢气、总烃含量超标。 预防措施 通过此次事故,我们认为对于无载调压变压器的分接开关在今后的运行中应注意以下几点: (1)在对分接开关进行切换前、后都必须测量其直流电阻。使用过的分接开关接触部分可能有一些局部熔伤,长期未用的分接头表面则可能存在氧化或触头不洁、镀层剥落、弹力不够、焊接脱落等现象,从而造成分接头的接触不良,接触电阻增大。这就将造成其局部过热,并危及变压器的安全运行,乃至造成变压器烧毁事故;还有可能引起绝缘油迅速劣化,从而被迫停运。因此,变压器在切换分接开关前、后都必须测量直流电阻,且三相电阻值相差不得超过2。 (2