《八年级数学下册第六章《平行四边形》单元检测题(含答案).docx》由会员分享,可在线阅读,更多相关《八年级数学下册第六章《平行四边形》单元检测题(含答案).docx(8页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、精品文档,仅供学习与交流,如有侵权请联系网站删除2017年北师大版八年级数学下册第六章平行四边形单元检测题一选择题(共12小题)1在下列条件中,能够判定一个四边形是平行四边形的是()A一组对边平行,另一组对边相等B一组对边相等,一组对角相等C一组对边平行,一条对角线平分另一条对角线D一组对边相等,一条对角线平分另一条对角线2如图,在ABC中,AB=4,BC=6,DE、DF是ABC的中位线,则四边形BEDF的周长是()A5 B7 C8 D103如图是一个由5张纸片拼成的平行四边形,相邻纸片之间互不重叠也无缝隙,其中两张等腰直角三角形纸片的面积都为S1,另两张直角三角形纸片的面积都为S2,中间一张
2、正方形纸片的面积为S3,则这个平行四边形的面积一定可以表示为()A4S1 B4S2 C4S2+S3 D3S1+4S34如图,在平行四边形ABCD中,ABC的平分线交AD于E,BED=150,则A的大小为()A150 B130 C120 D1005如图,在ABCD中,AB=6,BC=8,C的平分线交AD于E,交BA的延长线于F,则AE+AF的值等于()A2 B3 C4 D66若一个正n边形的每个内角为144,则这个正n边形的所有对角线的条数是()A7 B10 C35 D707如图,在ABCD中,AB=12,AD=8,ABC的平分线交CD于点F,交AD的延长线于点E,CGBE,垂足为G,若EF=2
3、,则线段CG的长为()A B4 C2 D8如图,ABCD的对角线AC,BD交于点O,已知AD=8,BD=12,AC=6,则OBC的周长为()A13 B17 C20 D269如图,将ABCD沿对角线AC折叠,使点B落在B处,若1=2=44,则B为()A66 B104 C114 D12410如图,DE是ABC的中位线,过点C作CFBD交DE的延长线于点F,则下列结论正确的是()AEF=CF BEF=DE CCFBD DEFDE11四边形ABCD中,对角线AC、BD相交于点O,给出下列四个条件:ADBC;AD=BC;OA=OC;OB=OD从中任选两个条件,能使四边形ABCD为平行四边形的选法有()A
4、3种 B4种 C5种 D6种12如图,在ABC中,点D,E分别是边AB,AC的中点,AFBC,垂足为点F,ADE=30,DF=4,则BF的长为()A4 B8 C2 D4二填空题(共6小题)13一个多边形的内角和是外角和的2倍,则这个多边形的边数为 14如图,在ABCD中,P是CD边上一点,且AP和BP分别平分DAB和CBA,若AD=5,AP=8,则APB的周长是 15如图,在ABCD中,E为边CD上一点,将ADE沿AE折叠至ADE处,AD与CE交于点F若B=52,DAE=20,则FED的大小为 16如图,是一个三角形,分别连接这个三角形三边中点得到图,再连接图中间小三角形三边的中点得到图,按这
5、样的方法进行下去,第n个图形中共有三角形的个数为 17如图,在四边形ABCD中,ABDC,E是AD中点,EFBC于点F,BC=5,EF=3(1)若AB=DC,则四边形ABCD的面积S= ;(2)若ABDC,则此时四边形ABCD的面积S S(用“”或“=”或“”填空)18如图,在ABC中,点D、E、F分别是边AB、BC、CA上的中点,且AB=6cm,AC=8cm,则四边形ADEF的周长等于 cm三解答题(共8小题)19已知平行四边形ABCD中,CE平分BCD且交AD于点E,AFCE,且交BC于点F(1)求证:ABFCDE;(2)如图,若1=65,求B的大小20如图,在ABCD中,E是BC的中点,
6、连接AE并延长交DC的延长线于点F(1)求证:AB=CF;(2)连接DE,若AD=2AB,求证:DEAF21如图,四边形ABCD为平行四边形,BAD的角平分线AE交CD于点F,交BC的延长线于点E(1)求证:BE=CD;(2)连接BF,若BFAE,BEA=60,AB=4,求平行四边形ABCD的面积22如图,四边形ABCD中,对角线AC,BD相交于点O,点E,F分别在OA,OC上(1)给出以下条件;OB=OD,1=2,OE=OF,请你从中选取两个条件证明BEODFO;(2)在(1)条件中你所选条件的前提下,添加AE=CF,求证:四边形ABCD是平行四边形23如图,点O是ABC内一点,连结OB、O
7、C,并将AB、OB、OC、AC的中点D、E、F、G依次连结,得到四边形DEFG(1)求证:四边形DEFG是平行四边形;(2)若M为EF的中点,OM=3,OBC和OCB互余,求DG的长度24如图,BD是ABC的角平分线,它的垂直平分线分别交AB,BD,BC于点E,F,G,连接ED,DG(1)请判断四边形EBGD的形状,并说明理由;(2)若ABC=30,C=45,ED=2,点H是BD上的一个动点,求HG+HC的最小值25如图,在ABCD中,点E,F在对角线AC上,且AE=CF求证:(1)DE=BF;(2)四边形DEBF是平行四边形26我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中
8、点四边形(1)如图1,四边形ABCD中,点E,F,G,H分别为边AB,BC,CD,DA的中点求证:中点四边形EFGH是平行四边形;(2)如图2,点P是四边形ABCD内一点,且满足PA=PB,PC=PD,APB=CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,猜想中点四边形EFGH的形状,并证明你的猜想;(3)若改变(2)中的条件,使APB=CPD=90,其他条件不变,直接写出中点四边形EFGH的形状(不必证明)参考答案一选择题1c2B3A4B5C6B7C8D9C10B11B12B二填空题13:5514:2415:ADBC16:4n317:318 :14三解答题19(1)证明:四边
9、形ABCD是平行四边形,ADBC,ABCD,DAE=F,D=ECF,E是ABCD的边CD的中点,DE=CE,在ADE和FCE中,ADEFCE(AAS);(2)解:ADEFCE,AE=EF=3,ABCD,AED=BAF=90,在ABCD中,AD=BC=5,DE=4,CD=2DE=820证明:(1)四边形ABCD是平行四边形,ABDF,ABE=FCE,E为BC中点,BE=CE,在ABE与FCE中,ABEFCE(ASA),AB=FC;(2)AD=2AB,AB=FC=CD,AD=DF,ABEFCE,AE=EF,DEAF21解:四边形ABFC是平行四边形;理由如下:ABCD,BAE=CFE,E是BC的中
10、点,BE=CE,在ABE和FCE中,ABEFCE(AAS);AE=EF,又BE=CE四边形ABFC是平行四边形22证明:(1)选取,在BEO和DFO中,BEODFO(ASA);(2)由(1)得:BEODFO,EO=FO,BO=DO,AE=CF,AO=CO,四边形ABCD是平行四边形23解:(1)D、G分别是AB、AC的中点,DGBC,DG=BC,E、F分别是OB、OC的中点,EFBC,EF=BC,DG=EF,DGEF,四边形DEFG是平行四边形;(2)OBC和OCB互余,OBC+OCB=90,BOC=90,M为EF的中点,OM=3,EF=2OM=6由(1)有四边形DEFG是平行四边形,DG=E
11、F=624解:(1)四边形EBGD是菱形理由:EG垂直平分BD,EB=ED,GB=GD,EBD=EDB,EBD=DBC,EDF=GBF,在EFD和GFB中,EFDGFB,ED=BG,BE=ED=DG=GB,四边形EBGD是菱形(2)作EMBC于M,DNBC于N,连接EC交BD于点H,此时HG+HC最小,在RTEBM中,EMB=90,EBM=30,EB=ED=2,EM=BE=,DEBC,EMBC,DNBC,EMDN,EM=DN=,MN=DE=2,在RTDNC中,DNC=90,DCN=45,NDC=NCD=45,DN=NC=,MC=3,在RTEMC中,EMC=90,EM=MC=3,EC=10HG+
12、HC=EH+HC=EC,HG+HC的最小值为1025证明:(1)四边形ABCD是平行四边形,ADCB,AD=CB,DAE=BCF,在ADE和CBF中,ADECBF,DE=BF(2)由(1),可得ADECBF,ADE=CBF,DEF=DAE+ADE,BFE=BCF+CBF,DEF=BFE,DEBF,又DE=BF,四边形DEBF是平行四边形26(1)证明:如图1中,连接BD点E,H分别为边AB,DA的中点,EHBD,EH=BD,点F,G分别为边BC,CD的中点,FGBD,FG=BD,EHFG,EH=GF,中点四边形EFGH是平行四边形(2)四边形EFGH是菱形证明:如图2中,连接AC,BDAPB=CPD,APB+APD=CPD+APD即APC=BPD,在APC和BPD中,APCBPD,AC=BD点E,F,G分别为边AB,BC,CD的中点,EF=AC,FG=BD,四边形EFGH是平行四边形,四边形EFGH是菱形(3)四边形EFGH是正方形证明:如图2中,设AC与BD交于点OAC与PD交于点M,AC与EH交于点NAPCBPD,ACP=BDP,DMO=CMP,COD=CPD=90,EHBD,ACHG,EHG=ENO=BOC=DOC=90,四边形EFGH是菱形,四边形EFGH是正方形【精品文档】第 8 页