《光伏电站运维一体化管理系统解决方案.docx》由会员分享,可在线阅读,更多相关《光伏电站运维一体化管理系统解决方案.docx(94页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、 光伏电站运维一体化管理系统解决方案电力行业系统解决方案光伏电站运维一体化管理系统第93页目录第 一 章 背景与需求81.1 行业背景81.2 现状分析91.3 系统需求10第 二 章 思路与目标112.1 指导思想112.2 设计原则112.3 设计标准122.4 设计目标13第 三 章 系统总体设计153.1 技术路线153.2 系统架构163.2.1 系统拓扑163.2.2 系统组成163.2.3 系统组网173.3 系统功能173.3.1 基础功能173.3.2 扩展功能193.4 系统特点193.4.1 智能:多智能技术整合应用193.4.2 高效:各技防系统深度融合203.4.3
2、安全:有效的数据安全策略203.4.4 可靠:完善的运维管理机制20第 四 章 站端系统设计214.1 站端系统概述214.2 视频监控系统214.2.1 监控点分布224.2.2 摄像机选型224.2.3 监控点配套234.2.4 智能出入口摄像机244.2.5 SMART摄像机254.2.6 视频处理单元314.3 入侵报警系统344.3.1 系统概述344.3.2 系统架构344.3.3 设备类型364.3.4 设备部署384.3.5 系统功能384.4 出入口管理系统394.4.1 门禁系统394.4.2 可视对讲门禁系统414.4.3 伸缩门424.4.4 系统功能424.5 环境监
3、控系统444.5.1 动环监控报警主机454.5.2 环境监测子系统454.5.3 火灾报警子系统484.5.4 智能控制系统494.6 主控室系统524.6.1 管理服务器534.6.2 监控工作站554.6.3 高清解码器554.6.4 显示系统56第 五 章 中心系统设计615.1 中心系统组成615.2 服务器615.3 工作站655.3.1 监控工作站655.3.2 配置工作站665.4 存储系统665.4.1 CVR存储模式665.4.2 存储配置685.5 解码系统695.6 显示系统725.6.1 产品介绍725.6.2 主要功能735.7 网络系统775.7.1 主干交换机7
4、75.7.2 防火墙77第 六 章 平台软件设计796.1 平台总体架构796.1.1 基础平台层806.1.2 平台服务层806.1.3 业务层806.1.4 应用层806.2 平台关键技术806.2.1 中间件技术816.2.2 构架/构件技术816.2.3 工作流技术816.2.4 XML和Web Services技术826.3 平台模块826.4 平台功能836.4.1 通用业务功能836.4.2 基础管理功能886.4.3 扩展业务功能926.5 平台运行环境956.5.1 硬件环境956.5.2 软件环境956.6 平台性能指标96第 一 章 背景与需求1.1 行业背景光伏发电是根
5、据光生伏特效应原理,将太阳光能直接转化为电能。目前全球大气污染日益严重,为了应对环境危机,加快清洁能源的应用势在必行。光伏发电是清洁能源的重要组成部分,发展前景广阔。2014政府工作报告:提高非化石能源发电比重,鼓励发展风能、太阳能;2015政府工作报告:能源生产和消费革命中,要大力发展风电、光伏发电、生物质能。从去年到现在国家所颁布的各类新能源政策来看,国家确实正在布局大力发展新能源行业。2014年12月,国家能源局发布了三项与光伏建设相关的文件(国家能源局关于推进分布式光伏发电应用示范区建设的通知、国家能源局综合司关于做好太阳能发展“十三五”规划编制工作的通知、国家能源局综合司关于做好20
6、14年光伏发电项目接网工作的通知),公布了30个国家首批基础设施等领域鼓励社会投资分布式光伏发电应用示范区,要求各地进一步督促协调有关各方做好光伏发电接网及并网运行工作,在2015年5月底前形成全国太阳能发展“十三五”规划初稿。由此可见,新能源行业在2015年将迎来一个新的元年,光伏发电大有可为。并网光伏发电系统是由光伏方阵、逆变器、升压变组成,不经过蓄电池储能,通过逆变升压后直接将电能输送到电网,由电网统一调配向用户供电。其中集中式大型并网光伏电站,大多都是国家投资,投资大、建设周期长、占地面积大。由于土地成本考虑,电站通常地处偏远地区,站内生产区域又广,给运维管理带来了诸多不便。作为国内第
7、一、世界第三的安防企业,海康威视应需而动,针对光伏电站运维管理中遇到的难点,开发出光伏电站运维一体化管理系统解决方案,开启了光伏电站运维管理新思维,助力电站“智能、高效、安全、可靠”运行。1.2 现状分析光伏电站由于地处偏远地区,上下班极为不便,采用倒班轮休制度,站内日常值班人员有限,而且管理的生产场地占地又广,给运维管理带来了极大不便。为了辅助日常生产管理,电站内需部署一系列辅助系统,包括视频监控、入侵报警、出入口管理、环境监测、火灾报警、智能控制等系统。根据我司对部分光伏电站的调研以及和设计院的交流,发现大多数电站只实现了常规部署和功能,而且现有系统也没有有效应用起来,在系统功能、资源共享
8、、业务整合上存在诸如以下各个亟待改善的方面:l 现有视频监控系统利用率低,智能化程度不高,且部分重点区域仍存在监控盲区;l 视频监控系统与生产监控系统没有信息交互,当操作或故障时没有视频复核;l 由于光伏电站的场地空旷,灰尘风沙较大,场地摄像机易附着灰尘,依靠人工维护非常不便;l 入侵报警、出入口管理、环境监测、智能控制等系统只实现了常规部署和功能,没有按照光伏电站的实际情况进行设计;l 各系统一般情况下均需要安装配置软件及操作软件,造成机房软硬件的冗余、系统管理员的业务不精或工作疏漏;l 没有统一的数据库,无法在内部实现信息共享,以及系统数据的统一管理与维护;l 各系统在功能实现上各自分工,
9、系统联动多数局限于硬件联动,增加实施与维护的复杂度;l 电站没有统一平台,无法实现站端设备的集中监测,无法配置全局预案,实现统一平台下的业务优化,增加了系统运维成本及安全隐患;l 总部无法实现远程查看所辖电站的运行数据,大部分系统信息不离站端,不利于总部管理。鉴于以上分析,如何对各系统资源进行有效整合,最大限度的挖掘现有辅助系统的潜力,最大程度的提高运维效率,增强系统安全性,已成为光伏电站管理中急待解决的问题。1.3 系统需求结合系统现状分析及项目实际需求,光伏电站运维管理迫切需要一体化的管理系统,系统需求主要分子系统及一体化管理平台两方面。子系统的部署及管理需求:l 电站内重要区域应无监控盲
10、点、监控点能够正常输出视频信号,确保主控室、监控中心对电站的全面监视、监管,并能自动清洁摄像机;l 电站内重要区域监控点能够支持高清监控,看清进入区域人员的脸部,并支持行为分析,在布防情况下一旦发现异常情况(如非法闯入、徘徊、聚集),能够及时报警;l 电站内需根据现场实际情况部署入侵报警系统,重要区域还需部署手动报警按钮,并实现报警录像;l 除了在升压站电气设备楼及主控楼部署出入口管理系统,还需在电站进站大门部署出入口管理系统;l 在电站进站大门部署可视对讲设备,便于未认证进站人员和主控室进行对讲核实,核实后由主控室远程开启伸缩门;l 对于站内重要区域的环境量,通过传感器进行采集,并通过智能控
11、制设备进行调节。一体化管理平台的需求:l 运维一体化管理平台由电站平台和总部平台组成;l 电站运维一体化管理平台需全面集成电站内的辅助系统,实现了视频监控、入侵报警、出入口管理、环境监测、火灾报警、智能控制等子系统的完全接入;l 电站运维一体化管理平台需依托视频监控系统,实现与其他系统的联动,从而对辅助系统的报警处理、日常运行管理、突发事件处置等各种业务实现可视化管理;l 电站运维一体化管理平台需建立一套高效、智能的管理机制,满足统一的配置管理、数据共享、功能联动和业务优化等系统需求;l 总部运维一体化管理平台需建立一套安全、可靠的管理机制,实现对电站辅助系统的集中监控、统一管理、可靠运维。第
12、 二 章 思路与目标2.1 指导思想在以生产自动化、高度数字化、网络化、机器自组织为标志的第四次工业革命带来的技术理念的变革势必带来管理的相应改变,具体表现在新能源电站运维中,即通过电站系统与信息技术的完美融合,把设备以网络形式联接起来,形成更开放、更积极通讯的系统结构,通过设备与人或设备与设备之间的对话交互,使电站在不依赖于人甚至独立于人的情况下实现不同设备单元的灵活、动态监测和控制,并且系统能自我更新、智慧升级,以最优化系统各单元的性能,达到更高的系统效率、更方便的运维和监控以及更快捷的通讯和管理,从而增加资源利用率,提高发电效率和收益率。2.2 设计原则随着信息技术的飞速发展,新技术不断
13、涌现。光伏电站运维一体化管理系统,必须是高性能、可扩展的计算机网络体系结构,以便支持今后不断更新和升级的需要,从而保护投资。同时本方案以满足实际应用为出发点,设计时主要遵循以下原则:1) 规范性设计将符合电力行业及安全防范相关标准规范,并结合项目实际建设现状。2) 可靠性系统可靠性是系统长期稳定运行的基石,只有可靠的系统,才能发挥有效的作用。本方案从系统设计理念到系统架构的设计,再到产品选型,都将持续秉承系统可靠性原则,均采用成熟的技术,具备较高的可靠性、较强的容错能力、良好的恢复能力及防雷抗强电干扰能力。3) 开放性系统设计采用标准化设计,产品及管理平台严格遵循相关技术的国际、国内和行业标准
14、,确保系统之间的透明性和互联互动,并充分考虑与其它业务系统的连接。在设计和设备选型时,将科学预测未来扩容需求,进行余量设计。4) 先进性在投资费用许可的情况下,系统采用当今先进的技术和设备,一方面能反映系统所具有的先进水平,包括先进的传输技术、图像编码压缩技术、视频智能分析技术、存储技术、控制技术,另一方面使系统具有强大的发展潜力,设备选型与技术发展相吻合,能保障系统的技术寿命及后期升级的可延续性。5) 易用性系统采用全中文、图形化软件实现整个监控系统管理与维护,人机对话界面清晰、简洁、友好,操控简便、灵活,便于监控和配置;采用稳定易用的硬件和软件,完全不需借助任何专用维护工具,既降低了对管理
15、人员进行专业知识的培训费用,又节省了日常频繁地维护费用。6) 安全性综合考虑设备安全、网络安全和数据安全。在前端采用完善的安全措施以保障前端设备的物理安全和应用安全,在前端与监控中心之间必须保障通信安全,采取可靠手段杜绝对前端设备的非法访问、入侵或攻击行为。对数据的访问采用严格的用户权限控制,并做好异常快速应急响应和日志记录。2.3 设计标准系统规划设计必须按照国际、国家和行业的有关标准和规范进行。本设计将依据和参照以下的设计规范和要求进行,但不仅仅限于以下所列范围。1) 电力安全防范设计方面:l 电力设施治安风险等级和安全防范要求(GA1089-2013)l 电力行业反恐怖防范标准(试行)(
16、电网部分)(2011)2) 安防视频监控系统设计方面:l 中华人民共和国公安部行业标准(GA70-94)l 视频安防监控系统技术要求(GA/T367-2001)l 民用闭路监视电视系统工程技术规范(GB501982011)l 工业电视系统工程设计规范(GB50115-2009)l 入侵报警子系统通用图形符号(GA/T75-2000)l 建筑及建筑群综合布线工程设计规范(GB/T50311-2000)l 电线电缆识别标志方法(GB/T6995)l 全介质自承式光缆(YD/T 980-1998)l 建筑设计防火规范(GBJ16-87)l 入侵探测器通用技术条件(GB10408.1-89)l 防盗报
17、警控制器通用技术条件(GB12663-90)l 报警图像信号有线传输装置(GB/T16677-1996)3) 视频监控图像质量方面:l 电视视频通道测试方法(GB3659-83)l 彩色电视图像质量主观评价方法(GB7401-1987)4) 视频系统网络设计方面:l 信息技术开放系统互连网络层安全协议(GB/T17963)l 计算机信息系统安全(GA 216.1-1999)l 计算机软件开发规范(GB8566-88)5) 视频系统工程建设方面:l 智能建筑设计标准(GB/T 50314-2006 )l 入侵报警工程程序与要求(GA/T75-94)l 入侵报警子系统验收规则(GA308-2001
18、)l 入侵报警工程技术规范(GB50348-2004)l 电子计算机机房设计规范(GB50174-93)l 建筑物防雷设计规范(GB50057-2010) l 建筑物电子信息系统防雷技术规范(GB50343-2012)l 入侵报警子系统雷电浪涌防护技术要求(GA/T670-2006)l 民用建筑电气设计规范(JGJ/T16-2008)2.4 设计目标截至2014年底,我国光伏装机总量达30GW,成为仅次于德国的世界第二大光伏应用大国。面对如此庞大的装机规模,如何通过维护运营来提高光伏电站的发电效率、降低运维成本,确保光伏电站的收益最大化成了电站业主、投资者们非常关心的问题。为了开启光伏电站运维
19、管理新思维,最终实现电站“智能、高效、安全、可靠”运行,需构建一套适应电站现代化管理的运维一体化管理系统。系统以现代信息技术为支撑,网络互联互通、信息资源共享、应用功能完备,主要实现以下目标:l 建立覆盖所有光伏电站的运维一体化管理系统,对电站的运行、设备进行全方位管理,满足电站主控室现场管理、总部监控中心全局监管、管理人员移动办公的需求;l 建设运维数据业务专网,运维数据业务专网独立于生产数据业务专网,高带宽传输,实现高清图像及环境、报警信息传输;l 对视频监控、入侵报警、出入口管理、环境监测、火灾报警、智能控制等系统进行集成管理,通过统一客户端进行呈现,确保人员高效应用;l 结合事故响应机
20、制部署预案,对突发事件快速做出响应和处置,有效对安全事件进行防范,降低和控制意外事故发生的风险;l 充分利用视频资源,监控发电设施运行环境,规范运行、维护及抢修过程,保障光伏电站稳定运行; l 通过现有信息资源,形成各类统计报表,供领导统筹决策;l 采用高科技手段,第一时间掌握设备不在线、工作异常等故障信息,及时排除故障,提高运维效率,减少运维成本。第 三 章 系统总体设计3.1 技术路线海康威视光伏电站运维一体化管理系统是集硬件、软件、网络于一体的综合监控系统,以iVMS-8800平台软件为核心,实现多业务融合监控,在主控室、监控中心即可对站端系统集中监控、统一管理,为光伏电站稳定运行保驾护
21、航。在系统设计过程中,除满足光伏电站的需求,还将适当技术创新。海康威视光伏电站运维一体化管理系统,将按照以下技术路线:1) 高清视频监控:全面接入720P及以上高清摄像机,提升视频质量和安防水平,满足细节监控(人脸、车辆特征)需求,支持高清录像存储;2) 智能分析识别:行为分析、车牌识别、车辆特征识别;3) 球机自动清洁:利用雨量传感器监测降雨量,根据平台预置规则,统一开启雨刷功能;4) 可视对讲门禁:集门禁、对讲、视频功能于一体,并能配合主控室进行可视化人员认证,从而远程开启伸缩门;5) 辅助系统融合:实现视频监控、入侵报警、出入口管理、环境监测、火灾报警、智能控制等系统的集成,各子系统根据
22、预案进行联动;6) 立体监管模式:实现电站、总部控制中心两级垂直监管,固定网络采用C/S、B/S方式进行访问,移动网络通过手持终端(手机、平板等)进行监管;7) 系统运维管理:IT基础设施管理、视频质量诊断、带宽优化及控制、资产管理、日志管理。3.2 系统架构3.2.1 系统拓扑图1 光伏电站运维一体化管理系统拓扑图3.2.2 系统组成光伏电站运维一体化管理系统由站端系统(光伏电站)、传输网络、中心系统(总部监控中心)这三个相互衔接、缺一不可的部分组成。1) 站端系统站端系统对站内的视频监控、入侵报警、出入口管理、环境监测、火灾报警、智能控制等系统进行了整合,主要负责对电站视音频、环境报警信息
23、进行采集、编码、存储及上传,并通过站端平台预置的的规则进行自动化联动。2) 传输网络运维一体化管理系统承载于运营商公网(ADSL、宽带或者3G/4G网络),用于站端与平台之间的通信。站端系统的电站视音频、环境报警信息可上传至平台,供中心管理人员调用监管。通过总部的网络安全隔离装置并经过身份认证后,在运营商的3G/4G网络,管理人员也可随时随地在手持终端查看现场情况。3) 中心系统中心系统可管理电站内部的所有设备,接收由各区域上报的信息,满足中心系统用户视频、环境报警信息查看的需求。3.2.3 系统组网由于光伏电站运维一体化管理系统部署在运营商公网,为了保障站端设施与平台的信息安全,需在运营商处
24、申请虚拟专网(VPN)的服务。VPN是通过公网建立一个临时的、安全的连接,可以对数据进行加密,达到安全使用互联网的目的。VPN是对企业内网的扩展,可以帮助远程用户与公司内网建立起可信的安全连接。由于运维数据业务网和生产数据业务网都承载于同一光纤传输网,需根据具体情况,合理分配带宽,并做好安全隔离措施。3.3 系统功能3.3.1 基础功能1) 实时监控采用海康威视的高品质摄像机,具有防尘、防水等功能特性。实时获得监控区域内清晰的监控图像,各种型号系统的摄像机可以满足不同区域监控点的监控需求,实现24小时不间断监控。同时可以对带云台设备进行云台操作,对视角、方位、焦距的调整,实现全方位、多视角、无
25、盲区、全天候式监控。2) 行为分析通过SMART摄像机,对于重要区域采用智能分析技术,通过行为分析和智能跟踪的方式,实现安全防范监控;本系统中主要对穿越警戒面、区域入侵、进入区域、离开区域等多种行为进行识别和触发报警。3) 车牌及车辆识别通过电站出入口部署的摄像机,对进入车辆进行抓拍,识别车牌信息及车型、车身颜色。4) 录像存储本系统支持前端存储和中心存储两种模式,前端的视音频信号接入视频处理单元存储数据,达到前端存储的需要,以供事后调查取证;也可部署网络存储设备,适合大容量多通道并发的中心存储需求。5) 智能检索通过支持SMART功能的NVR,支持基于智能侦测事件的快速检索;支持基于区域入侵
26、、越界侦测的录像后检索,可在回放中自定义智能规则快速检索,录像搜索随心所欲。6) 语音功能通过语音对讲,总部监控中心客户端能够和电站主控室客户端进行沟通,主控室客户端能够和电站大门口的可视对讲门禁主机进行沟通。7) 处置预案通过视频监控系统和其他辅助系统的关联,能够提供丰富的视频预案:客户端联动、电视墙联动、报警录像等。有助于相关部门第一时间发现事故点,迅速做出反应,把事故损失控制到最小范围。8) 巡检预案系统支持可视化巡检预案,按人工巡检的路线,把沿途多个监控点的多个预置位添加进预案,一旦发现问题可截图并标注问题,及时通知相关部门。相较于人工巡检、手工纸质记录的传统巡检方式,该预案可大大提高
27、巡检质量及到位率。9) 远程维护通过平台软件能够对前端设备进行校时、重新启动、修改参数、软件升级、远程维护等功能。设备提供远程访问功能,运维人员不必到达设备现场,就可修改设备的各项参数,提高的设备维护效率。和雨量传感器相结合,还能开启球机自动清洁功能。10) 系统管理通过平台软件能够进行全方位管理,提供中心管理、Web服务、认证授权、日志管理、资产管理、地图管理、流媒体服务、云台代理、存储管理、文件备份、设备代理、移动服务、报警管理、电视墙代理、网管服务等系统服务,提高整套系统的工作效率。3.3.2 扩展功能1) 黑白名单对于授权放行的车辆,登记车牌并录入系统白名单,当车辆访问电站时,识别出车
28、牌后和数据库已录入的车牌进行比对,判别是否为授权车辆如果是已登记的车辆自动开启门禁放行;如果是未登记的车辆启动相应联动通知主控室,主控室可调阅视频来判别是否手动开启门禁。2) 视频质量诊断采用轮巡方式检测设备工作异常,如清晰度异常(图像模糊)、亮度异常(过亮、过暗)、偏色、噪声干扰(雪花、条状、滚屏)、画面冻结、信号丢失、云台失控等,及时系统的故障并报警通知,提高视频监控系统有效性。3.4 系统特点3.4.1 智能:多智能技术整合应用系统运用多种智能分析技术,包括视频行为分析技术、自动跟踪技术、人脸抓拍识别技术、车牌抓拍识别技术、智能透雾技术、视频质量诊断技术、智能后检索技术等,对实时视频流和
29、录像回放视频流进行逐帧分析,自动过滤无用的视频图像,让安保人员专注于有“价值”的视频。智能技术的应用,相当于给电站配置了“永不疲劳”的保安,并变被动监控为主动监控,达到电站安防事件的“事前防范、事中处理、事后分析”的目的。3.4.2 高效:各技防系统深度融合平台提供各类编解码设备管理、存储管理、网络管理、报警管理等基础设备管控功能。同时对各子系统进行统一的监测、控制和管理,可以兼容视频监控、入侵报警、出入口管理、环境监测、火灾报警、智能控制等多个辅助业务应用子系统。通过优化系统架构,提高系统的整体效能,使平台的管理更灵活、更人性化,为用户提供一站式的解决方案。平台还支持智能预案,使电站在不依赖
30、于人甚至独立于人的情况下实现不同系统间的智能联动。3.4.3 安全:有效的数据安全策略系统具有有效的数据安全策略,通过身份认证和权限管理,确保用户认证后才可以进入系统,进入系统后还需严格执行访问权限和管理权限。权限设置采用多层次、高加密技术,以确保系统各单元运行的安全,同时系统用户登录、操作、配置等功能都采用严格的传输加密机制。对于数据存储,采用电站分布式存储+总部网络存储,并通过硬盘保护机制、RAID5技术,保证录像数据不会丢失。3.4.4 可靠:完善的运维管理机制平台能够提供完善的综合监控与运维管理功能,可实现对视频设备、报警设备、门禁设备、对讲设备、环境设备、网络设备、存储设备、服务器、
31、中间件系统、数据库系统等各种资源的全面监控和管理,达到监控系统的可视化、可控化和自动化管理目的。平台帮助各级运维部门快速定位故障,迅速恢复监控系统运行环境,并通过规范的流程化运维管理,将管理数据电子化、管理过程规范化,从而为全网运行环境构建统一、完善、主动的流程化运维、规范化服务和集中化管理,全面提升运维管理能力。第 四 章 站端系统设计4.1 站端系统概述图2站端系统拓扑图站端系统主要由视频监控、入侵报警、出入口管理、环境监测、火灾报警、智能控制等系统组成,实现对电站现场视音频及各种环境报警信息采集、处理,智能设备开启、出入口控制等功能。4.2 视频监控系统视频监控系统主要负责对电站重要区域
32、进行全天候的常规视频监控,同时能与其它子系统进行报警联动,满足对安全管理的要求。除了常规视频监控外,本方案还采用智能视频监控,以此提高系统的实用价值。4.2.1 监控点分布光伏电站安装有大量一次设备,还配套有二次设备、计算机设备、通信设备,任何设备都关系到电站的安全运行,同时场地环境也影响着设备的运行状况。光伏电站主要分光伏方阵场地、升压站和主控楼。场地上主要部署光伏方阵、电缆槽盒、汇流箱、箱式逆变器、箱变等设施。升压站的本质就是一座变电站,实现电能逆变升压后输送到电网。主控楼主要有主控室、生产配套用房(办公室、会议室、寝室等)。光伏电站的监控点可采用如下分布:l 光伏电站大门:监视进出电站人
33、员及车辆的情况。l 光伏电站全景:对光伏电站全景进行巡视,全面了解电站的现场情况。l 光伏方阵场地:部署在就地逆变升压区,全面监控现场箱式逆变器、箱变、附近光伏方阵/电缆槽盒、附近的电站周界。l 110kV场地:监视该区域断路器、隔离开关、接地刀闸的外观状态、分/合状态;监视该区域CT、PT、避雷器和瓷瓶等的外观状态。l 主变场地:监视变电站主变的外观状态、油位、档位、套管、瓷瓶、渗漏油、风扇状态等;监控该区域接地变及消弧线圈装置的外观状态。l 无功补偿场地:监视该区域并联电容器装置的外观状态。l 电气设备楼:监视变电站内高压室(35kV开关室、无功补偿室)、低压配电室、二次设备室、工具间的环
34、境情况,运行设备的外观状况;监控进出电气设备楼的人员情况。l 主控楼:监控主控室的环境情况、运行设备的外观状况;监控进出综合楼的人员情况。4.2.2 摄像机选型前端摄像机的监控范围大小、视频采集质量将影响整个视频监控系统的质量,系统设计时应根据现场监控需求,选择合适的产品,保障视频监控的效果。我们选择摄像机时可参考以下原则:l 光伏电站大门监控应采用智慧出入口摄像机,对进入电站的车辆进行监控,并获取车身颜色、车型、车牌、驾驶员人脸信息,支持星光级监控、下挂式外置LED灵活补光、强光抑制功能;l 室外全景监控(主控楼顶)应采用网络激光云台,实现大范围监控的需要,监控半径达5KM(夜间2.5KM)
35、,支持SMART功能;l 大范围场地监控应采用网络高清球机,考虑到大场景下补光效果不佳,需采用红外球机,并配置雨刷,用于雨天开启清洁功能,同时支持SMART功能;l 主控室监控应采用红外高清球机,不带雨刷功能;l 小范围监控应采用网络高清摄像机,考虑到室外环境下补光效果不佳,需采用红外筒机,同时支持SMART功能;l 网络高清图像分辨率达1080p以上;l 室外摄像机应达到IP66防护等级。4.2.3 监控点配套1) 网络通信部署在就地逆变升压区的红外球机,大多距离主控楼较远(大于100米)且分布较散,给线缆敷设带来了极大不便,可以接入电力监控系统部署在箱式逆变器里的环网交换机,和生产数据通过
36、VLAN实现逻辑隔离。2) 安装方式电站摄像机应根据所需监控的范围、角度、场景以及现场条件来选择安装方法。出于安全因素及施工条件考虑,升压站及主控楼摄像机以支架安装为主。出于监控效果考虑,同时又考虑了安全因素及施工条件,就地逆变升压区以立杆安装为主。3) 防雷接地为进一步提高系统的抗雷击能力,除设备需具备防雷功能外,立杆安装的摄像机还需加装视频、电源二合一防雷器。摄像机外壳、摄像机立杆等应进行可靠接地,接入光伏电站接地系统。4) 补光灯对于采光条件比较差的场所,以及夜晚低照度环境下的监控需要,为了保障监控质量,需要在监控点配置补光灯,在监控现场环境及设备时开启周围的灯光。通过平台软件,可在平台
37、控制现场任意灯光。4.2.4 智能出入口摄像机通常情况下,只有电站工作用车会周期性进出电站;当事故情况下,检修车辆才会进入电站。电站作为电力系统的重要防护对象,需杜绝无关车辆进入电站,对进出车辆进行记录和识别。在车辆通过时,智能出入口摄像机能准确识别包含车牌、车型、车身颜色的信息,并在视频上叠加结构化数据(如以上车辆信息)。视频监控输出分辨率达到19201080,视频分析范围覆盖相邻3车道,同时支持来向车辆和去向车辆分析摄像机支持超低照度成像,彩色0.0021 lux (F1.2,AGC ON),黑白:0.00021 lux (F1.2,AGC ON)。同时采用摄像机成像控制模块和下挂式外置补
38、光灯之间的反馈控制技术,满足星光级监控需求。采用强光抑制技术,防止强逆光、强顺光环境下对拍摄造成的影响。4.2.4.1 车牌信息识别系统可自动对车辆牌照进行识别,包括车牌号码、车牌颜色的识别。1) 车牌号码自动识别在实时记录通行车辆图像的同时,还具备对符合“GA36-92”(92式牌照)、“GA36-2007”(新号牌标准)、“GA36.1-2001”(02式新牌照)标准的民用车牌、警用车牌、军用车牌、武警车牌的车牌自动识别能力,包括2002式号牌,车辆号牌识别率90%。所能识别的字符包括:阿拉伯数字“09”十个英文字母“AZ”二十六个省市区汉字简称京、津、晋、冀、蒙、辽、吉、黑、沪、苏、浙、
39、皖、闽、赣、鲁、豫、鄂、湘、粤、桂、琼、川、贵、云、藏、陕、甘、青、宁、新、渝、港、澳、台;04式军用车牌汉字军、空、海、北、沈、兰、济、南、广、成号牌分类用汉字警、学、使、领、试、境07式武警车牌字符WJ样式的字母数字2) 车牌颜色自动识别系统能识别黑、白、蓝、黄、绿五种车牌颜色。3) 系统识别车牌类型部分示例4.2.4.2 车辆信息识别支持11种车身颜色识别,车身颜色包括白、灰、黄、粉、红、紫、绿、蓝、棕、黑、青,并区分深,浅色;支持7种车型的识别,车型包括轿车,面包车,客车,小货车,大货车,中型客车,SUV-MPV;支持车标识别,达1000+种子品牌。4.2.5 SMART摄像机4.2.
40、5.1 行为侦测SMART摄像机支持10种行为侦测功能,包括越界侦测、区域入侵侦测、进入区域侦测、离开区域侦测、徘徊侦测、物品遗留侦测、物品拿取侦测、人员聚集侦测、快速移动侦测、停车侦测。越界侦测功能描述:自动侦测运动目标穿越警戒面的行为,适合于周界防范的应用。功能特点:警戒面、布防时间由用户自由设定 。支持单向或双向跨越警戒面侦测。可侦测预设尺寸范围的目标。区域入侵侦测功能描述:当有目标进入警戒区域时立即报警,适合于周界防范的应用。功能特点:警戒区域、布防时间可由用户自由设定。支持侦测多目标进入区域。可侦测预设尺寸范围的目标。进入区域侦测功能描述:侦测在警戒区域内是否有目标入侵,适合于周界防
41、范的应用。功能特点:警戒区域、布防时间、入侵持续时间可由用户自由设定。支持侦测多目标入侵侦测。可侦测预设尺寸范围的目标。离开区域侦测功能描述:当有目标离开警戒区域时立即报警,适合于周界防范的应用。功能特点:警戒区域、布防时间可由用户自由设定。支持侦测多目标离开区域。可侦测预设尺寸范围的目标。徘徊侦测功能描述:侦测是否有目标在警戒区域内滞留超过设定时间。功能特点:警戒区域、布防时间、徘徊持续时间可由用户自由设定。支持侦测多目标徘徊侦测。可侦测预设尺寸范围的目标。物品遗留侦测功能描述:侦测警戒区域是否出现遗留物体。功能特点:警戒区域、布防时间、遗留时间可由用户自由设定支持侦测多目标遗留侦测。可侦测
42、预设尺寸范围的物品。物品拿取侦测功能描述:侦测警戒区域是否有物品被拿取或被搬移。功能特点:警戒区域、布防时间、保全时间可由用户自由设定支持侦测多目标徘徊侦测。可侦测预设尺寸范围的物品。停车侦测功能描述:对监控防区内停泊的车辆进行自动侦测。功能特点:警戒区域、布防时间、停车时间可由用户自由设定。支持侦测多目标徘徊侦测。可侦测预设尺寸范围的目标。人员聚集侦测功能描述:侦测在警戒区域内的人员密度是否大于阈值。功能特点:警戒区域、布防时间、聚集时间、人员聚集密度可由用户自由设定。可侦测预设尺寸范围的目标。快速移动侦测功能描述:侦测是否有目标在警戒区域内的行动速度大于阈值。功能特点:警戒区域、布防时间、
43、快速移动速度、可由用户自由设定。可侦测预设尺寸范围的目标。4.2.5.2 异常侦测SMART摄像机支持3种异常侦测功能,包括虚焦侦测、场景变更侦测、音频异常侦测。1) 虚焦侦测虚焦侦测用于对视频进行分析,发现虚焦问题进行自动提醒,从而取代人工对画面虚焦进行诊断,大大提高了诊断效率。2) 场景变更侦测如果监控设备由于受到外部干扰或者人为破坏而造成监控场景发生改变,将会使监控系统无法有效运作,从而使被监控场景面临安全风险。场景变更侦测能分析被监控场景是否发生变更,一旦发生变更则会触发报警。3) 音频异常侦测在监控行业中,声音的采集已成为图像采集的一项重要补充,音频采集已逐渐成为摄像机的标配功能。音
44、频侦测功能是通过对声音的强度进行检测,对于拾音器断开、超过一定声音强度阀值或超过一定声音突变的变化量阀值可实现自动预警功能。4.2.5.3 特征识别SMART摄像机支持人脸侦测、车辆检测共两种特征识别功能。1) 人脸侦测人脸侦测通过模式识别技术,对视频信号中的内容进行分析,对视频图像中的每个位置进行判断是否存在人脸,从而能够准确地找出视频中出现的所有人脸,提供人脸的数量和各个人脸的位置、大小,同时通过智能跟踪技术,提取出人脸的运动轨迹信息,而与背景信息无关,几乎不受背景扰动的干扰。2) 车辆检测目前常见的车牌识别有两种触发方式,一种是外设触发,另一种是视频触发。SMART摄像机就支持视频触发模
45、式,不需借助线圈、红外或其他硬件车辆检测器。视频触发方式是指车牌识别系统采用动态运动目标序列图像分析处理技术,实时监测车道上车辆移动情况,发现车辆通过时捕捉车辆的图像,识别车辆牌照,并进行后续处理。4.2.5.4 智能跟踪在SMART球机中直接集成智能分析与跟踪功能,当球机镜头固定时,可做区域入侵检测,对报警目标可实现放大跟踪。当场景中出现多个目标时,也可以手动选定某个目标进行跟踪。l 区域入侵报警跟踪l 手动选定目标跟踪在电站围墙区域,智能跟踪球能够得到很好的应用。电站的围墙范围广,如果是不具备跟踪功能的普通球机,当非法闯入者越过围墙后,还需控制球机寻找。通过智能分析,划定围墙为警戒面,布防
46、情况下当有可疑份子穿越警戒面后,即可产生报警信号并进行跟踪,帮助运行人员及时定位非法闯入者。4.2.6 视频处理单元在视频监控系统中,视频处理单元需对前端摄像机进行管理,基于前端SMART摄像机的应用,我们需采用支持SMART NVR,这样才能发挥出SMART系统的整体优势。SMART NVR具有智能联动、智能存储、智能回放、智能管理等特色功能。4.2.6.1 智能联动1) 人脸侦测报警:SMART IPC端启用人脸侦测检测后,SMART NVR可对人脸侦测信息联动报警弹图、声音警告、上传中心、发送邮件、触发报警输出等。2) 行为侦测报警:SMART IPC端启用越界侦测、区域入侵侦测,SMART NVR可对越界侦测、区域入侵侦测信息进行联动报警弹图、声音警告、上传中心、发送邮件、触发报警输出等。3) 音频异常侦测报警:SMART IPC端启用音频异常侦测,SMART NVR可对音频异常信息进行联动报警弹图、声音警告、上传中心、发送邮件、触发