2022年细胞计数板的使用方法 .pdf

上传人:H****o 文档编号:33398462 上传时间:2022-08-10 格式:PDF 页数:7 大小:862.81KB
返回 下载 相关 举报
2022年细胞计数板的使用方法 .pdf_第1页
第1页 / 共7页
2022年细胞计数板的使用方法 .pdf_第2页
第2页 / 共7页
点击查看更多>>
资源描述

《2022年细胞计数板的使用方法 .pdf》由会员分享,可在线阅读,更多相关《2022年细胞计数板的使用方法 .pdf(7页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、血球计数板 - 基本构造血球计数板是一块特制的厚型载玻片,载玻片上有四个槽构成三个平台。中间的平台较宽,其中间又被一短横槽分隔成两半,每个半边上面各刻有一小方格网,每个方格网共分九个大格, 中央的一大格作为计数用, 称为计数区。 计数区的刻度有两种:一种是计数区分为16 个大方格(大方格用三线隔开) , 而每个大方格又分成 25 个小方格;另一种是一个计数区分成25 个大方格(大方格之间用双线分开), 而每个大方格又分成16 个小方格 。 但是不管计数区是哪一种构造, 它 们都有一个共同特点,即 计数区都由 400 个小方格组成 。计数区边长为 1mm ,则计数区的面积为1mm2,每个小方格的

2、面积为1/400mm2。盖上盖玻片后,计数区的高度为0.1mm ,所以每个计数区的体积为0.1mm3,每个小方格的体积为 1/4000mm3。使用细胞计数板计数时, 先要测定每个小方格中微生物的数量,再换算成每毫升菌液(或每克样品)中微生物细胞的数量。细胞计数板 - 使用方法1视待测菌悬液浓度,加无菌水适当稀释(斜面一般稀释100 倍),以每小格的菌数可数为度。2取洁净的细胞计数板一块,在计数区上盖上一块盖玻片。名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 1 页,共 7 页 -

3、- - - - - - - - 3将菌悬液摇匀,用滴管吸取少许,从计数板中间平台两侧的沟槽内沿盖玻片的下边缘滴入一小滴 (不宜过多) ,让菌悬液利用液体的表面张力充满计数区,勿使气泡产生, 并用吸水纸吸去沟槽中流出的多余菌悬液。也可以将菌悬液直接滴加在计数区上 (不要使计数区两边平台沾上菌悬液,以免加盖盖玻片后, 造成计数区深度的升高),然后加盖盖玻片(勿使产生气泡)。4静置片刻,使细胞沉降到计数板上,不再随液体漂移。将细胞计数板放置于显微镜的载物台上夹稳, 先在低倍镜下找到计数区后, 再转换高倍镜观察并计数。由于生活细胞的折光率和水的折光率相近,观察时应减弱光照的强度。5计数时若计数区是由1

4、6 个大方格组成, 按对角线方位, 数左上、左下、右上、右下的 4 个大方格(即 100 小格)的菌数。如果是25 个大方格组成的计数区,除数上述四个大方格外,还需数中央1 个大方格的菌数(即80 个小格)。为 了保证计数的准确性, 避免重复计数和漏记, 在计数时, 对沉降在格线上的细胞的统计应有统一的规定。 如菌体位于大方格的双线上,计数时则数上线不数下线,数 左线不数右线,以减少误差。即位于本格上线和左线上的细胞计入本格,本格的下线和右线上的细胞按规定计入相应的格中。见下图:即本格中计数细胞为3 个。(细胞压线,仅计数 相邻的两条线上的细胞)6对于 出芽的酵母菌,芽体达到母细胞大小一半时,

5、即可作为两个菌体计算。每个样品重复计数2-3 次(每次数值不应相差过大,否则应重新操作),按公式计算出每 mL (g)菌悬液所含细胞数量。名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 2 页,共 7 页 - - - - - - - - - 7测数完毕,取下盖玻片,用水将细胞计数板冲洗干净,切勿用硬物洗刷或抹擦,以免损坏网格刻度 。洗净后自行晾干或用吹风机吹干,放入盒内保存。细胞计数板 - 计数公式1、16 格25 格的细胞计数板计算公式:细胞数 /ml =100小格内细胞个数 /1

6、0040010000稀释倍数1、25 格16 格的细胞计数板计算公式:细胞数 /ml =80小格内细胞个数 /8040010000稀释倍数网摘:http:/ 之前写的细胞计数板使用,其中的图片天涯都给删了,我没有备份。今天浏览网页看到一个英文版的介绍,写的很好。Using a Counting ChamberFor microbiology, cell culture, and many applications that require use of suspensions of cells it is necessary to determine cell concentration. O

7、ne can often determine cell density of a suspension spectrophotometrically, however that form of determination does not allow an assessment of cell viability, nor can one distinguish cell types.A device used for determining the number of cells per unit volume of a suspension is called a counting cha

8、mber. The most widely used type of chamber is called a hemocytometer, since it was originally designed for performing blood cell counts. 名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 3 页,共 7 页 - - - - - - - - - To prepare the counting chamber the mirror-like polishe

9、d surface is carefully cleaned with lens paper. The coverslip is also cleaned. Coverslips for counting chambers are specially made and are thicker than those for conventional microscopy, since they must be heavy enough to overcome the surface tension of a drop of liquid. The coverslip is placed over

10、 the counting surface prior to putting on the cell suspension. The suspension is introduced into one of the V-shaped wells with a pasteur or other type of pipet. The area under the coverslip fills by capillary action. Enough liquid should be introduced so that the mirrored surface is just covered. T

11、he charged counting chamber is then placed on the microscope stage and the counting grid is brought into focus at low power.It is essential to be extremely careful with higher power objectives, since the counting chamber is much thicker than a conventional slide. The chamber or an objective lens may

12、 be 名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 4 页,共 7 页 - - - - - - - - - damaged if the user is not not careful. One entire grid on standard hemacytometers with Neubauer rulings can be seen at 40 x (4x objective). The main divisions separate the grid into 9 lar

13、ge squares (like a tic-tac-toe grid). Each square has a surface area of one square mm, and the depth of the chamber is 0.1 mm. Thus the entire counting grid lies under a volume of 0.9 mm-cubedSuspensions should be dilute enough so that the cells or other particles do not overlap each other on the gr

14、id, and should be uniformly distributed. To perform the count, determine the magnification needed to recognize the desired cell type. Now systematically count the cells in selected squares so that the total count is 100 cells or so (number of cells needed for a statistically significant count). For

15、large cells this may mean counting the four large corner squares and the middle one. For a dense suspension of small cells you may wish to count the cells in the four 1/25 sq. mm corners plus the middle square in the central square. Always decide on a specific counting patter to avoid bias. For cell

16、s that overlap a ruling, count a cell as in if it overlaps the top or right ruling, and out if it overlaps the bottom or left ruling.Here is a way to determine a particle count using a Neubauer hemocytometer. Suppose that you conduct a count as described above, and count 187 particles in the five sm

17、all squares described. Each square has an area of 1/25 mm-squared (that is, 0.04 mm-squared) and depth of 0.1 mm. The total volume in each square is (0.04)x(0.1) = 0.004 mm-cubed. You have five squares with combined volume of 5x(0.004) = 0.02 mm-cubed. Thus you counted 187 particles in a volume of 0

18、.02 mm-cubed, giving you 187/(0.02) = 9350 particles per mm-cubed. There are 1000 cubic millimeters in one cubic centimeter (same as a milliliter), so your particle count is 9,350,000 per ml. Cells are often large enough to require counting over a larger surface area. For example, you might count th

19、e total number of cells in the four large corner squares plus the middle combined. Each square has surface area of 1 mm-squared and a depth of 0.1 mm, giving it a volume of 0.1 mm-cubed. Suppose that you counted 125 cells (total) in the five squares. You then have 125 cells per 0.5 mm-cubed, which i

20、s 250 cells/mm-cubed. Again, multiply by 1000 to determine cell count per ml (250,000).Sometimes you will need to dilute a cell suspension to get the cell density low enough for counting. In that case you will need to multiply your final count by the dilution factor. For example, suppose that for co

21、unting you had to dilute a suspension of Chlamydomonas 10 fold. Suppose you obtained a final count of 250,000 cells/ml as described above. Then the count in the original (undiluted) suspension is 10 x 250,000 which is 2,500,000 cells/ml.名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 5 页,共 7 页 - - - - - - - - - 我自己的一个细胞计数板的protocol ,也很经典名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 6 页,共 7 页 - - - - - - - - - 名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 7 页,共 7 页 - - - - - - - - -

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 技术总结

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁