2022年高中数学第六册高三数学二轮立体几何复习教案 .pdf

上传人:H****o 文档编号:33355136 上传时间:2022-08-10 格式:PDF 页数:17 大小:673.81KB
返回 下载 相关 举报
2022年高中数学第六册高三数学二轮立体几何复习教案 .pdf_第1页
第1页 / 共17页
2022年高中数学第六册高三数学二轮立体几何复习教案 .pdf_第2页
第2页 / 共17页
点击查看更多>>
资源描述

《2022年高中数学第六册高三数学二轮立体几何复习教案 .pdf》由会员分享,可在线阅读,更多相关《2022年高中数学第六册高三数学二轮立体几何复习教案 .pdf(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2010高三数学二轮立体几何复习教案一、本章知识结构:二、重点知识回顾1、空间几何体的结构特征(1)棱柱、棱锥、棱台和多面体棱柱是由满足下列三个条件的面围成的几何体:有两个面互相平行;其余各面都是四边形;每相邻两个四边形的公共边都互相平行;棱柱按底面边数可分为:三棱柱、四棱柱、五棱柱等棱柱性质:棱柱的各个侧面都是平行四边形,所有的侧棱都相等;棱柱的两个底面与平行于底面的截面是对应边互相平行的全等多边形. 过棱柱不相邻的两条侧棱的截面都是平行四边形. 棱锥是由一个底面是多边形,其余各面是有一个公共顶点的三角形所围成的几何体棱锥具有以下性质:底面是多边形;侧面是以棱锥的顶点为公共点的三角形;平行于

2、底面的截面和底面是相似多边形,相似比等于从顶点到截面和从顶点到底面距离的比截面面积和精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 1 页,共 17 页底面面积的比等于上述相似比的平方棱台是棱锥被平行于底面的一个平面所截后,截面和底面之间的部分由棱台定义可知,所有侧棱的延长线交于一点,继而将棱台还原成棱锥多面体是由若干个多边形围成的几何体多面体有几个面就称为几面体,如三棱锥是四面体(2)圆柱、圆锥、圆台、球分别以矩形的一边,直角三角形的一直角边,直角梯形垂直于底边的腰所在的直线,半圆以它的直径所在直线为旋转轴,旋转一周而形成的几何体叫做圆柱、圆锥、

3、圆台、球圆柱、圆锥和圆台的性质主要有:平行于底面的截面都是圆;过轴的截面(轴截面)分别是全等的矩形、等腰三角形、等腰梯形;圆台的上底变大到与下底相同时,可以得到圆柱;圆台的上底变小为一点时,可以得到圆锥2、空间几何体的侧面积、表面积(1)棱柱侧面展开图的面积就是棱柱的侧面积,棱柱的表面积就是它的侧面积与两底面面积的和因为直棱柱的各个侧面都是等高的矩形,所以它的展开图是以棱柱的底面周长与高分别为长和宽的矩形如果设直棱柱底面周长为c,高为h,则侧面积Sch侧若长方体的长、宽、高分别是a、b、 c,则其表面积2()Sabbcca表(2)圆柱的侧面展开图是一个矩形矩形的宽是圆柱母线的长,矩形的长为圆柱

4、底面周长如果设圆柱母线的长为l,底面半径为r,那么圆柱的侧面积2Srl侧,此时圆柱底面面积2Sr底.所以圆柱的表面积22222()SSSrlrr rl侧底(3)圆锥的侧面展开图是以其母线为半径的扇形如果设圆锥底面半径为r,母线长为l,则 侧 面 积Srl侧, 那 么 圆 锥 的 表 面 积 是 由 其 侧 面 积 与 底 面 面 积 的 和 构 成 , 即 为2()SSSrlrr rl侧底(4)正棱锥的侧面展开图是n个全等的等腰三角形如果正棱锥的周长为c,斜高为h,则它的侧面积12Sch侧(5) 正棱台的侧面积就是它各个侧面积的和如果设正棱台的上、下底面的周长是cc,斜高是h,那么它的侧面积是

5、12Sch侧(6)圆台侧面展开图是以截得该圆台的圆锥母线为大圆半径,圆锥与圆台的母线之差为小圆半径的一个扇环如果设圆台的上、下底面半径分别为rr,母线长为l,那么它的侧面积是 ()Srr l侧圆台的表面积等于它的侧面积与上、下底面积的和,精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 2 页,共 17 页即2222 () ()SSSSrr lrrrrr lrl侧上底下底(7)球的表面积24SR,即球的表面积等于其大圆面积的四倍3、空间几何体的体积(1)柱体(棱柱、圆柱)的体积等于它的底面积S和高h的积,即VSh柱体其中底面半径是r,高是h的圆柱的体

6、积是2Vr h圆柱(2) 如果一个锥体 (棱锥、圆锥)的底面积是S, 高是h, 那么它的体积是13VSh锥体 其中底面半径是r,高是h的圆锥的体积是213Vr h圆锥,就是说,锥体的体积是与其同底等高柱体体积的13(3)如果台体(棱台、圆台)的上、下底面积分别是SS,高是h,那么它的体积是1()3VSSSS h台体 其 中 上 、 下 底 半 径 分 别 是rR, 高 是h的 圆 台 的 体 积 是221 ()3VrRrRh圆台(4)球的体积公式:334RV. 4、中心投影和平行投影(1)中心投影:投射线均通过投影中心的投影。(2)平行投影:投射线相互平行的投影。(3)三视图的位置关系与投影规

7、律三视图的位置关系为:俯视图在主视图的下方、左视图在主视图的右方三视图之间的投影规律为:主、俯视图长对正;主、左视图高平齐;俯、左视图宽相等5、直观图画法斜二测画法的规则:(1)在空间图形中取互相垂直的x 轴和 y 轴,两轴交于O 点,再取 z 轴,使xOz90 ,且yOz90 ( 2)画直观图时把它们画成对应的x轴、y轴和z轴,它们相交于O,并使x O y45 ,x O z90 。(3)已知图形中平行于x 轴、 y 轴或 z 轴的线段,在直观图中分别画成平行于x轴、y精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 3 页,共 17 页轴和z轴的线

8、段(4)已知图形中平行于x 轴和 z 轴的线段,在直观图中长度相等;平行于y 轴的线段,长度取一半6平面(1)对平面的理解平面是一个不加定义、只须理解的最基本的原始概念立体几何中的平面是理想的、绝对平且无限延展的模型,平面是无大小、厚薄之分的类似于我们以前学的直线,它可以无限延伸,它是不可度量的(2)对公理的剖析(1)公理 1 的内容反映了直线与平面的位置关系,公理1 的条件“线上不重合的两点在平面内”是公理的必要条件,结论是“线上所有点都在面内”这个结论阐述了两个观点:一是整条直线在平面内;二是直线上所有点在平面内其作用是:可判定直线是否在平面内、点是否在平面内(2)公理2 中的“有且只有一

9、个”的含义要准确理解这里的“有”是说图形存在,“只有一个”是说图形唯一,确定一个平面中的“确定”是“有且只有”的同义词,也是指存在性和唯一性这两方面这个术语今后也会常常出现,要理解好其作用是:一是确定平面;二是证明点、线共面(3)公理3 的内容反映了平面与平面的位置关系,它的条件简而言之是“两面共一点”,结论是“两面共一线,且过这一点,线唯一”对于本公理应强调对于不重合的两个平面,只要它们有公共点,它们就是相交的位置关系,交集是一条直线其作用是:其一它是判定两个平面是否相交的依据,只要两个平面有一个公共点,就可以判定这两个平面必相交于过这点的一条直线;其二它可以判定点在直线上,点是两个平面的公

10、共点,线是这两个平面的公共交线,则这点在交线上7. 空间直线 . (1)空间直线位置分三种:相交、平行、异面. 相交直线共面有且有一个公共点;平行直线共面没有公共点;异面直线不同在任一平面内。(2)异面直线判定定理:过平面外一点与平面内一点的直线和平面内不经过该点的直线是异面直线 .(不在任何一个平面内的两条直线)(3)平行公理:平行于同一条直线的两条直线互相平行. (4)等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等推论:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成锐角(或直角)相等 . 8. 直线与平面平行、直线与平面垂直. (1)空间直线

11、与平面位置分三种:相交、平行、在平面内. (2)直线与平面平行判定定理:如果平面外一条直线和这个平面内一条直线平行,那么这条直线和这个平面平行.( “线线平行,线面平行”)(3)直线和平面平行性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.( “线面平行,线线平行”)(4)直线与平面垂直是指直线与平面任何一条直线垂直,过一点有且只有一条直线和一个平面垂直,过一点有且只有一个平面和一条直线垂直. 直线与平面垂直判定定理:如果一条直线和一个平面内的两条相交直线垂直,则这条直线与这个平面垂直。推论:如果两条直线同垂直于一个平面,那么这两条直线平行. 9

12、. 平面平行与平面垂直. 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 4 页,共 17 页(1)空间两个平面的位置关系:相交、平行. (2)平面平行判定定理:如果一个平面内有两条相交直线都平行于另一个平面,哪么这两个平面平行 .( “线面平行,面面平行”)推论:垂直于同一条直线的两个平面互相平行;平行于同一平面的两个平面平行. (3)两个平面平行的性质定理:如果两个平面平行同时和第三个平面相交,那么它们交线平行.( “面面平行,线线平行”)(4)两个平面垂直性质判定一:两个平面所成的二面角是直二面角,则两个平面垂直. 两个平面垂直性质判定二:如

13、果一个平面与一条直线垂直,那么经过这条直线的平面垂直于这个平面 .( “线面垂直,面面垂直”)(5)两个平面垂直性质定理:如果两个平面垂直,那么在一个平面内垂直于它们交线的直线也垂直于另一个平面. 10. 空间向量 . (1) a.共线向量:共线向量亦称平行向量,指空间向量的有向线段所在直线互相平行或重合. (2)空间向量基本定理:如果三个向量cba,不共面,那么对空间任一向量P,存在一个唯一的有序实数组x、y、 z,使czbyaxp. 推论:设O、 A、 B、C 是不共面的四点,则对空间任一点P,都存在唯一的有序实数组x、 y、z 使OCzOByOAxOP(这里隐含x+y+z 1) . (3

14、)a.空间向量的坐标:空间直角坐标系的x 轴是横轴(对应为横坐标),y 轴是纵轴(对应为纵轴),z 轴是竖轴(对应为竖坐标). 令a=(a1,a2,a3),),(321bbbb,则),(332211babababa,)(,(321Raaaa,332211babababa,a)(,332211Rbababab332211bababa。0332211babababa。222321aaaaaa(用到常用的向量模与向量之间的转化:aaaaaa2) 空间两个向量的夹角公式232221232221332211|,cosbbbaaababababababa(a123(,)a a a,b123(,)b b b

15、) 。空间两点的距离公式:212212212)()()(zzyyxxd. b.法向量:若向量a所在直线垂直于平面,则称这个向量垂直于平面,记作a,如果a那么向量a叫做平面的法向量 . OABCD精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 5 页,共 17 页c.用向量的常用方法:利用法向量求点到面的距离定理:如图,设 n 是平面的法向量, AB 是平面的一条射线,其中A,则点 B 到平面的距离为|nnAB. .异面直线间的距离|CD ndn(12,l l是两异面直线, 其公垂向量为n,CD、分别是12,l l上任一点,d为12,l l间的距离

16、). .点B到平面的距离|AB ndn(n为平面的法向量,AB是经过面的一条斜线,A). 直线AB与平面所成角sin|AB marcABm(m为平面的法向量 ). 利用法向量求二面角的平面角定理:设21,nn分别是二面角l中平面,的法向量,则21, nn所成的角就是所求二面角的平面角或其补角大小(21,nn方向相同, 则为补角,21,nn反方,则为其夹角). 二面角l的平面角cos|m narcm n或cos|m narcm n(m,n为平面,的法向量) . 三、考点剖析考点一:空间几何体的结构、三视图、直观图【内容解读】了解柱、锥、台、球体及其简单组合体的结构特征,并能运用这些特征描述现实生

17、活中的简单物体的结构。能画出简单空间几何体的三视图,能识别上述三视图所表示的立体模型,会用斜二测画法画出它们的直观图。能用平行投影与中心投影两种方法画出简单空间几何体的三视图与直观图。了解空间几何体的不同表示形式。会画某建筑物的视图与直观图。空间几何体的结构与视图主要培养观察能力、归纳能力和空间想象能力,能通过观察几何体的模型和实物,总结出柱、锥、台、球等几何体的结构特征;能识别三视图所表示的空间几何体,会用材料制作模型,培养动手能力。【命题规律】柱、锥、台、球体及其简单组合体的结构特征在旧教材中出现过,而三视图为新增内容,一般情况下,新增内容会重点考查,从2007 年、 2008 年广东、山

18、东、海南的高考题来看, 三视图是出题的热点,题型多以选择题、填空题为主, 也有出现在解答题里,如 2007年广东高考就出现在解答题里,属中等偏易题。例、 (2008 广东)将正三棱柱截去三个角(如图 1 所示ABC, ,分别是GHI三边的中点)得到几何体如图2,则该几何体按图2 所示方向的侧视图(或称左视图)为()精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 6 页,共 17 页解:在图2 的右边放扇墙(心中有墙 ),可得答案A 点评:本题主要考查三视图中的左视图,要有一定的空间想象能力。例 2、 (2008 江苏模拟)由大小相同的正方体木块堆成

19、的几何体的三视图如图所示,则该几何体中正方体木块的个数是解:以俯视图为主, 因为主视图左边有两层,表示俯视图中左边最多有两个木块,再看左视图, 可得木块数如右图所示,因此这个几何体的正方体木块数的个数为5 个。点评:从三视图到确定几何体,应根据主视图和俯视图情况分析,再结合左视图的情况定出几何体,最后便可得出这个立体体组合的小正方体个数。考点二:空间几何体的表面积和体积【内容解读】理解柱、锥、台的侧面积、表面积、体积的计算方法,了解它们的侧面展开图,及其对计算侧面积的作用,会根据条件计算表面积和体积。理解球的表面积和体积的计算方法。把握平面图形与立体图形间的相互转化方法,并能综合运用立体几何中

20、所学知识解决有关问题。【命题规律】柱、锥、台、球的表面积和体积以公式为主,按照新课标的要求,体积公式不要求记忆,只要掌握表面积的计算方法和体积的计算方法即可。因此,题目从难度上讲属于中档偏易题。例 3、 (2007 广东)已知某几何体的俯视图是如图5 所示的矩形,正视图(或称主视图 )是一个底边长为8、高为 4 的等腰三角形,侧视图(或称左视图)是一个底边长为6、高为 4 的等腰三角形(1)求该几何体的体积V;(2)求该几何体的侧面积S 解: 由已知可得该几何体是一个底面为矩形,高为 4,顶点在底面的射影是矩形中心的四棱锥V-ABCD 。(1) 1864643V(2) 该四棱锥有两个侧面VAD

21、. VBC 是全等的等腰三角形,且 BC 边上的高为221844 22h, 另两个侧面VAB. VCD 也是全等的等腰三角形, E F D I A H G B C E F D A B C 侧视图 1 图 2 B E AB E BB E CB E D主视图左视图俯视图精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 7 页,共 17 页AB 边上的高为2226452h因此112(64 285)4024 222S点评:在课改地区的高考题中,求几何体的表面积与体积的问题经常与三视图的知识结合在一起,综合考查。例 4、 ( 2008 山东)右图是一个几何体的

22、三视图,根据图中数据,可得该几何体的表面积是()A9B10C11D12解:从三视图可以看出该几何体是由一个球和一个圆柱组合而成的简单几何体,其表面及为:22411221 312 .S,故选 D。点评:本小题主要考查三视图与几何体的表面积。既要能识别简单几何体的结构特征,又要掌握基本几何体的表面积的计算方法。例 5、(湖北卷3) 用与球心距离为1的平面去截球, 所得的截面面积为, 则球的体积为 ()A. 38B. 328C. 28D.332解:截面面积为截面圆半径为1,又与球心距离为1球的半径是2,所以根据球的体积公式知348 233RV球,故 B 为正确答案点评:本题考查球的一些相关概念,球的

23、体积公式的运用。考点三:点、线、面的位置关系【内容解读】理解空间中点、线、面的位置关系,了解四个公理及其推论;空间两直线的三种位置关系及其判定;异面直线的定义及其所成角的求法。通过大量图形的观察、实验,实现平面图形到立体图形的飞跃,培养空间想象能力。会用平面的基本性质证明共点、共线、共面的问题。【命题规律】主要考查平面的基本性质、空间两条直线的位置关系,多以选择题、填空题为主,难度不大。例 6、如图 1,在空间四边形ABCD 中,点 E、H 分别是边AB、AD 的中点, F、G 分别是边BC、CD 上的点, 且CFCBCGCD23,则()(A)EF 与 GH 互相平行(B)EF 与 GH 异面

24、(C)EF 与 GH 的交点 M 可能在直线AC 上,也可能不在直线AC俯视图正(主 )视图侧(左)视图2 3 2 2 图 1 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 8 页,共 17 页上(D)EF 与 GH 的交点 M 一定在直线AC 上解:依题意,可得EHBD ,FGBD ,故 EHFG,由公理2 可知, E、F、G、 H 共面,因为 EH12BD ,FGBD23,故 EHFG,所以, EFGH 是梯形, EF 与 GH 必相交,设交点为M,因为点M 在 EF 上,故点M 在平面 ACB 上,同理,点M 在平面 ACD 上,即点M 是

25、平面 ACB 与平面 ACD 的交点,而AC 是这两个平面的交线,由公理3 可知,点M 一定在平面ACB 与平面 ACD 的交线 AC 上。选( D) 。点评:本题主要考查公理2 和公理3 的应用,证明共线问题。利用四个公理来证明共点、共线的问题是立体几何中的一个难点。例 7、 (2008 全国二 10)已知正四棱锥SABCD的侧棱长与底面边长都相等,E是SB的中点,则AESD,所成的角的余弦值为()A13B23C33D23解:连接 AC 、BD 交于 O,连接 OE,因 OESD.所以 AEO 为异面直线SD 与 AE 所成的角。设侧棱长与底面边长都等于2,则在 AEO 中, OE 1,AO

26、2,AE=3122,于是3331132)2(1)3(cos222AEO,故选 C。点评:求异面直线所成的角,一般是平移异面直线中的一条与另一条相交构成三角形,再用三角函数的方法或正、余弦定理求解。考点四:直线与平面、平面与平面平行的判定与性质【内容解读】掌握直线与平面平行、平面与平面平行的判定与性质定理,能用判定定理证明线面平行、面面平行,会用性质定理解决线面平行、面面平行的问题。通过线面平行、面面平行的证明,培养学生空间观念及及观察、操作、实验、探索、合情推理的能力。【命题规律】主要考查线线、面面平行的判定与性质,多以选择题和解答题形式出现,解答题中多以证明线面平行、面面平行为主,属中档题。

27、例 8、 (2008 安徽)如图,在四棱锥OABCD中,底面ABCD四边 长为1的 菱 形 ,4ABC, OAABCD底面, 2OA,M为OA的中点,N为BC的中点()证明:直线MNOCD平面;()求异面直线AB 与 MD 所成角的大小;NMABDCO精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 9 页,共 17 页()求点B 到平面 OCD 的距离。方法一:(1)证明:取OB 中点 E,连接 ME,NE MECDMECD,AB,AB 又,NEOCMNEOCD平面平面MNOCD平面(2)CDAB,MDC为异面直线AB与MD所成的角(或其补角)作,

28、APCDP于连接MP平面A BCD,OACDMP2,42ADP DP=222MDMAAD,1cos,23DPMDPMDCMDPMD所以AB与MD所成角的大小为3(3)AB平面OCD,点 A 和点 B 到平面 OCD 的距离相等,连接OP,过点 A 作AQOP于点 Q,,APCD OACDCDOAPAQCD平面又,AQOPAQOCD平面,线段 AQ 的长就是点A 到平面 OCD 的距离2222213 24122OPODDPOAADDP,22APDP222233 22OA APAQOP,所以点B 到平面 OCD 的距离为23方法二 (向量法 ) 作APCD于点 P,如图 ,分别以 AB,AP,AO

29、 所在直线为, ,x y z轴建立坐标系22222(0,0,0),(1,0,0),(0,0),(,0),(0,0,2),(0,0,1),(1,0)22244ABPDOMN, 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 10 页,共 17 页xyzNMABDCOP(1)22222(1, 1),(0, 2),(, 2)44222MNOPOD设平面 OCD 的法向量为( , , )nx y z,则0,0n OPn OD即2202222022yzxyz取2z,解得(0,4,2)n22(1, 1) (0,4,2)044MN nMNOCD平面(2)设AB与

30、MD所成的角为,22(1,0,0),(, 1)22ABMD1cos,23AB MDABMD,AB与MD所成角的大小为3(3)设点 B 到平面 OCD 的交流为d,则d为OB在向量(0,4,2)n上的投影的绝对值, 由(1,0, 2)OB, 得23OB ndn.所以点 B 到平面 OCD 的距离为23点评:线面平行的证明、异面直线所成的角,点到直线的距离,既可以用综合方法求解,也可以用向量方法求解,后者较简便,但新课标地区文科没学空间向量。例 9、 (2008 江苏模拟)一个多面体的直观图和三视图如图所示,其中M、N 分别是 AB、AC的中点, G 是 DF 上的一动点 . (1)求证:;ACG

31、N(2)当 FG=GD 时,在棱AD 上确定一点P,使得 GP/平面 FMC, 并给出证明 . 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 11 页,共 17 页证明:由三视图可得直观图为直三棱柱且底面ADF 中 AD DF,DF=AD=DC (1)连接 DB ,可知 B、N、 D 共线,且ACDN 又 FD AD FDCD,FD面 ABCD FD AC AC 面 FDN FDNGN面GNAC (2)点 P 在 A 点处证明:取DC 中点 S,连接 AS、GS、GA G 是 DF 的中点,GS/FC,AS/CM 面 GSA/面 FMC GSAG

32、A面GA/面 FMC 即 GP/面 FMC 点评:证明线面平行,在平面内找一条直线与平面外的直线平行,是证明线面平行的关键。考点五:直线与平面、平面与平面垂直的判定与性质【内容解读】掌握直线与平面垂直、平面与平面垂直的判定与性质定理,能用判定定理证明线线垂直、线面垂直、面面垂直,会用性质定理解决线面垂直、面面垂直的问题。通过线面垂直、面面垂直的证明,培养学生空间观念及及观察、操作、实验、探索、合情推理的能力。【命题规律】主要考查线线、面面垂直的判定与性质,多以选择题和解答题形式出现,解答题中多以证明线线垂直、线面垂直、面面垂直为主,属中档题。例 10、 (2008 广东五校联考)正方体ABCD

33、 A1B1C1D1 中 O 为正方形ABCD 的中心, M 为BB1 的中点,求证:(1) D1O/平面 A1BC1; (2) D1O平面 MAC. 证明 : (1)连结11,BD B D分别交11,AC AC于1,O O在正方体1111ABCDABC D中 ,对角面11BB D D为矩形1,O O分别是11,BD B D的中点11/BODO四边形11BO D O为平行四边形11/BO D O精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 12 页,共 17 页1D O平面11ABC,1BO平面11ABC1/D O平面11ABC(2)连结MO,设正

34、方体1111ABCDABC D的棱长为a, 在正方体1111ABCDABC D中,对角面11BB D D为矩形且1,2BBa BDa,OM分别是1,BD BB的中点2,22aBMBOODa122BMBOODDD1ODDRtMBORt1BOMDDO在1ODDRt中,1190DDODOD190BOMDOD,即1DOMO在正方体1111ABCDABC D中1DD平面ABCD1DDAC又ACBD,1DDBDDAC平面11BB D D1D O平面11BB D D1ACDO又ACMOO1D O平面MAC点评:证明线面垂直,关键是在平面内找到两条相交直线与已知直线垂直,由线线垂直推出线面垂直,证明线线垂直有

35、时要用勾股定理的逆定理例 11、 (2008 广东中山模拟)如图,四棱锥PABCD 中, PA平面 ABCD ,底面 ABCD 是直角梯形, AB AD ,CDAD, CD=2AB ,E 为 PC 中点(I) 求证:平面PDC平面 PAD;(II) 求证: BE/平面 PAD证明:(1)由 PA平面 ABCDAADPACDPA)AD(CD已知PADCDPADCD面面平面 PDC平面 PAD;(2)取 PD 中点为 F,连结 EF、AF,由 E 为 PC 中点,得 EF 为 PDC 的中位线,则EF/CD, CD=2EF 又 CD=2AB ,则 EF=AB 由 AB/CD ,则 EFAB 所以四

36、边形ABEF 为平行四边形,则EF/AF 由 AF面 PAD,则 EF/面 PADA B C D E P A B C D E P F 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 13 页,共 17 页点评:证明面面垂直,先证明线面垂直,要证线面垂直,先证明线线垂直例 12、 (2008 广东深圳模拟)如图,四棱锥ABCDS的底面是正方形,SA底面ABCD,E是SC上一点(1)求证:平面EBD平面SAC;(2)设4SA,2AB,求点A到平面SBD的距离;(1)证明:SA底面ABCDBDSA且ACBDSAC平面BD平面EBD平面SAC(2)解:因为

37、ABD-SSBD-AVV,且232221SSBD,可求得点A到平面SBD的距离为34点评:求点到面的距离,经常采用等体积法,利用同一个几何体,体积相等,体现了转化思想考点六:空间向量【内容解读】用空间向量解决立体几何问题的“三步曲”(1)用空间向量表示问题中涉及的点、直线、平面,建立立体图形与空间向量的联系,从而把立体几何问题转化为向量问题(几何问题向量化);(2)通过向量运算,研究点、直线、平面之间的位置关系以及它们之间的距离和夹我有等问题(进行向量运算);(3)把向量的运算结果“翻译”成相应的几何意义(回归几何问题)【命题规律】空间向量的问题一般出现在立体几何的解答题中,难度为中等偏难例、

38、如图1,直三棱柱111ABCA B C中,1CACB,90BCA,棱12AAMN,分别是111A BA A,的中点求BN的长;EDCBAS精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 14 页,共 17 页求11cos BA CB,的值解:如图1,建立空间直角坐标系Oxyz(1)依题意,得(0 10)(101)BN, , ,222(10)(01)(10)3BN(2)依题意,得11(102)(01 0)(0 0 0)(01 2)ABCB, , , , ,11(11 2)(01 2)BACB, , ,1111365BA CBBACB,11111130

39、cos10BA CBBA CBBA CB,点评:本题主要考查了空间向量的概念及坐标运算的基本知识,考查了空间两向量的夹角、长度的计算公式解题的关键是恰当地建立空间直角坐标系和准确地表示点的坐标例、如图2,在四棱锥PABCD,底面ABCD为矩形,PD底面ABCD,E是AB上一点,PEEC已知1222PDCDAE,求:异面直线PD与EC的距离;二面角EPCD的大小解:以D为坐标原点,DADCDP,所在直线分别为xyz, ,轴,建立空间直角坐标系,并设DAa,则1(0 0)(2 0)(0 2 0)(0 0 0)(0 02)02A aB aCDPEa, , , , ,(1)PECE,0PE CE,解得

40、32a0DE CE,即DECE,又DEPD,故DE是异面直线PD与EC的公垂线精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 15 页,共 17 页而1DE,即异面直线PD与EC的距离为1(2)作DGPC,并设(0)Gyz, ,(0)(0 22)DGyz PC, ,且0DG PC,则2zy,可取(012)DG, ,再作EFPC于F,并设(0)Fmn,3122EFmn,且0EF PC,则222nm,又取3 12222EF,由DGPC,EFPC,可知DG与EF的夹角就是所求二面角的大小,2cos2DG EFDG EF,即所求二面角为4点评:向量法求二面

41、角是一种独特的方法,因为它不但是传统方法的有力补充,而且还可以另辟溪径,解决传统方法难以解决的求二面角问题向量法求二面角通常有以下三种转化方式:先作、证二面角的平面角AOB,再求得二面角的大小为arccosOA OBOA OB;先求二面角两个半平面的法向量12,nn(注意法向量的方向要分布在二面角的内外),再求得二面角的大小为1212arccosn nn n或其补角;先分别在二面角两个半平面内作棱的垂线(垂足不重合),又可转化为求两条异面直线的夹角例、如图,已知正三棱柱111ABCAB C,D是AC的中点,求证:1AB 平面1DBC证明:建立如图所示的空间直角坐标系Axyz设正三棱柱的底面边长

42、为a,侧棱长为b,精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 16 页,共 17 页则1133(0 0 0)0(0)0022222aaaABaBabCabD, , ,1322aABab,130 0022aBDaDCb, , ,设平面1DBC的一个法向量为n()xyz, ,则130202BDaxaDCybz,nn所以0.2xazyb,不妨令2yb,则n(0 2)ba, ,由于1ABn0abab,得1ABn又1AB平面1DBC,1AB平面1DBC点评:平面的法向量是空间向量的一个重要概念,它在解决立体几何的许多问题中都有很好的应用 . 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 17 页,共 17 页

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 技术总结

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁