2022年完整word版,六年级数学上册组合图形的周长和面积 .pdf

上传人:C****o 文档编号:33338741 上传时间:2022-08-10 格式:PDF 页数:29 大小:1.72MB
返回 下载 相关 举报
2022年完整word版,六年级数学上册组合图形的周长和面积 .pdf_第1页
第1页 / 共29页
2022年完整word版,六年级数学上册组合图形的周长和面积 .pdf_第2页
第2页 / 共29页
点击查看更多>>
资源描述

《2022年完整word版,六年级数学上册组合图形的周长和面积 .pdf》由会员分享,可在线阅读,更多相关《2022年完整word版,六年级数学上册组合图形的周长和面积 .pdf(29页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、1 六年级数学上册组合图形的周长和面积例 1.求阴影部分的面积。 (单位:厘米) 解:这是最基本的方法:圆面积减去等腰直角三角形的面积, -2 1=1.14(平方厘米)例 2.正方形面积是 7 平方厘米,求阴影部分的面积。(单位:厘米) 解:这也是一种最基本的方法用正方形的面积减去圆的面积。设圆的半径为r,因为正方形的面积为7 平方厘米,所以=7,所以阴影部分的面积为: 7-=7- 7=1.505 平方厘米例 3.求图中阴影部分的面积。 (单位:厘米) 解:最基本的方法之一。用四个圆组成一个圆,用正方形的面积减去圆的面积,所以阴影部分的面积: 2 2- 0.86 平方厘米。例 4.求阴影部分的

2、面积。 (单位:厘米) 解:同上,正方形面积减去圆面积,16-( )=16-4=3.44 平方厘米例 5.求阴影部分的面积。 (单位:厘米) 解:这是一个用最常用的方法解最常见的题,为方便起见,我们把阴影部分的每一个小部分称为“ 叶形” ,是用两个圆减去一个正方形,( ) 2-16=8-16=9.12 平方厘米另外:此题还可以看成是1 题中阴影部分的 8 倍。精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 1 页,共 29 页2 例 6.如图:已知小圆半径为2 厘米,大圆半径是小圆的3 倍,问:空白部分甲比乙的面积多多少厘米?解:两个空白部分面积之

3、差就是两圆面积之差(全加上阴影部分) -( )=100.48 平方厘米(注:这和两个圆是否相交、交的情况如何无关)例 7.求阴影部分的面积。 (单位:厘米) 解:正方形面积可用 (对角线长 对角线长 2,求) 正方形面积为: 5 5 2=12.5 所以阴影面积为: 4-12.5=7.125 平方厘米(注:以上几个题都可以直接用图形的差来求,无需割、补、增、减变形) 例 8.求阴影部分的面积。 (单位:厘米) 解:右面正方形上部阴影部分的面积,等于左面正方形下部空白部分面积,割补以后为圆,所以阴影部分面积为:( )=3.14 平方厘米例 9.求阴影部分的面积。 (单位:厘米) 解:把右面的正方形

4、平移至左边的正方形部分,则阴影部分合成一个长方形,所以阴影部分面积为: 2 3=6 平方厘米例 10.求阴影部分的面积。 (单位:厘米) 解:同上,平移左右两部分至中间部分,则合成一个长方形,所以阴影部分面积为2 1=2 平方厘米(注: 8、9、10 三题是简单割、补或平移 ) 例 11.求阴影部分的面积。 (单位:厘米) 解:这种图形称为环形,可以用两个同心圆的面积差或差的一部分来求。(- )= 3.14=3.66 平方厘米精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 2 页,共 29 页3 例 12.求阴影部分的面积。 (单位:厘米) 解:三

5、个部分拼成一个半圆面积( ) 14.13 平方厘米例 13.求阴影部分的面积。 (单位:厘米) 解: 连对角线后将 叶形剪开移到右上面的空白部分,凑成正方形的一半 . 所以阴影部分面积为: 8 8 2=32 平方厘米例 14.求阴影部分的面积。 (单位:厘米) 解:梯形面积减去圆面积,(4+10) 4- =28-4=15.44 平方厘米 . 例 15.已知直角三角形面积是12 平方厘米,求阴影部分的面积。分析: 此题比上面的题有一定难度, 这是 叶形 的一个半 . 解: 设三角形的直角边长为r ,则=12,=6 圆面积为:2=3。圆内三角形的面积为122=6,阴影部分面积为: (3-6)=5.

6、13 平方厘米例 16.求阴影部分的面积。 ( 单位: 厘米) 解:= (116- 36)=40=125.6 平方厘米例 17.图中圆的半径为5 厘米, 求阴影部分的面积。 ( 单位: 厘米) 解:上面的阴影部分以AB为轴翻转后,整个阴影部分成为梯形减去直角三角形,或两个小直角三角形AED 、BCD 面积和。所以阴影部分面积为: 552+5102=37.5 平方厘米精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 3 页,共 29 页4 例 18.如图,在边长为6 厘米的等边三角形中挖去三个同样的扇形, 求阴影部分的周长。解:阴影部分的周长为三个扇形

7、弧,拼在一起为一个半圆弧,所以圆弧周长为: 23.1432=9.42 厘米例 19.正方形边长为 2 厘米,求阴影部分的面积。解:右半部分上面部分逆时针,下面部分顺时针旋转到左半部分,组成一个矩形。所以面积为: 12=2 平方厘米例 20.如图,正方形 ABCD 的面积是 36 平方厘米,求阴影部分的面积。解:设小圆半径为r,4 =36, r=3 ,大圆半径为 R ,=2 =18, 将阴影部分通过转动移在一起构成半个圆环, 所以面积为 : (-)2=4.5=14.13 平方厘米例 21. 图中四个圆的半径都是1 厘米,求阴影部分的面积。解:把中间部分分成四等分, 分别放在上面圆的四个角上, 补

8、成一个正方形,边长为 2 厘米,所以面积为: 22=4平方厘米例 22. 如图,正方形边长为8 厘米,求阴影部分的面积。解法一 : 将左边上面一块移至右边上面, 补上空白 , 则左边为一三角形 , 右边一个半圆 . 阴影部分为一个三角形和一个半圆面积之和. ()2+44=8+16=41.12 平方厘米解法二 : 补上两个空白为一个完整的圆. 所以阴影部分面积为一个圆减去一个叶形, 叶形面积为 : ()2-44=8-16 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 4 页,共 29 页5 所以阴影部分的面积为 : ()- 8+16=41.12 平

9、方厘米例 23.图中的 4 个圆的圆心是正方形的4 个顶点,它们的公共点是该正方形的中心,如果每个圆的半径都是1 厘米,那么阴影部分的面积是多少?解:面积为个圆减去个叶形,叶形面积为:- 11= -1 所以阴影部分的面积为 :4 -8(-1)=8 平方厘米例 24.如图,有 8 个半径为 1 厘米的小圆, 用他们的圆周的一部分连成一个花瓣图形,图中的黑点是这些圆的圆心。如果圆周 率取 3.1416,那么花瓣图形的的面积是多少平方厘米?分析:连接角上四个小圆的圆心构成一个正方形,各个小圆被切去个圆,这四个部分正好合成个整圆,而正方形中的空白部分合成两个小圆解:阴影部分为大正方形面积与一个小圆面积

10、之和为:44+=19.1416 平方厘米例 25.如图,四个扇形的半径相等,求阴影部分的面积。( 单位: 厘米) 分析:四个空白部分可以拼成一个以为半径的圆所以阴影部分的面积为梯形面积减去圆的面积,4(4+7) 2- =22-4=9.44 平方厘米例 26.如图,等腰直角三角形ABC 和四分之一圆 DEB ,AB=5厘米, BE=2厘米,求图中阴影部分的面积。解: 将三角形 CEB以 B为圆心,逆时针转动90 度,到三角形 ABD位置,阴影部分成为三角形ACB面积减去个小圆面积 , 为: 5 52-4=12.25-3.14=9.36平方厘米例 27.如图,正方形 ABCD 的对角线 AC=2厘

11、米,扇形 ACB 是以 AC为直径的半圆,扇形 DAC 是以 D为圆心, AD为半径的圆的一部分,求阴影部分的面积。解: 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 5 页,共 29 页6 因为 2=4,所以=2 以 AC为直径的圆面积减去三角形ABC面积加上弓形 AC面积,- 224+4-2 =-1+(-1) =-2=1.14 平方厘米例 28.求阴影部分的面积。 ( 单位: 厘米) 解法一:设 AC中点为 B,阴影面积为三角形ABD 面积加弓形 BD的面积, 三角形 ABD的面积为 :5 52=12.5弓形面积为 : 2- 55 2=7.1

12、25所以阴影面积为 :12.5+7.125=19.625平方厘米解法二:右上面空白部分为小正方形面积减去小圆面积,其值为: 55-=25-阴影面积为三角形 ADC减去空白部分面积, 为:1052-(25-)=19.625平方厘米例 29.图中直角三角形ABC 的直角三角形的直角边AB=4厘米,BC=6厘米,扇形 BCD 所在圆是以 B为圆心,半径为 BC的圆, CBD= ,问:阴影部分甲比乙面积小多少?解: 甲、乙两个部分同补上空白部分的三角形后合成一个扇形BCD ,一个成为三角形ABC ,此两部分差即为: 465 -12=3.7 平方厘米例 30.如图, 三角形 ABC是直角三角形,阴影部分

13、甲比阴影部分乙面积大28 平方厘米,AB=40厘米。求 BC的长度。精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 6 页,共 29 页7 解:两部分同补上空白部分后为直角三角形ABC ,一个为半圆,设BC长为 X,则40X 2- 2=28 所以 40X-400=56 则 X=32.8 厘米例 31.如图是一个正方形和半圆所组成的图形,其中P为半圆周的中点,Q为正方形一边上的中点,求阴影部分的面积。解:连 PD 、PC转换为两个三角形和两个弓形,两三角形面积为: APD面积+QPC 面积= (510+55)=37.5 两弓形 PC 、PD面积为:-

14、 55所以阴影部分的面积为: 37.5+-25=51.75 平方厘米例 32.如图,大正方形的边长为6 厘米,小正方形的边长为4 厘米。求阴影部分的面积。解:三角形 DCE 的面积为 :410=20 平方厘米梯形 ABCD 的面积为 :(4+6) 4=20平方厘米从而知道它们面积相等, 则三角形 ADF面积等于三角形 EBF面积,阴影部分可补成圆 ABE的面积,其面积为:4=9=28.26 平方厘米例 33.求阴影部分的面积。 ( 单位: 厘米) 解: 用 大圆的面积减去长方形面积再加上一个以2 为半径的圆 ABE面积,为(+)-6 = 13-6 =4.205 平方厘米例 34.求阴影部分的面

15、积。 ( 单位: 厘米) 解:两个弓形面积为:- 342=-6 阴影部分为两个半圆面积减去两个弓形面积,结果为精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 7 页,共 29 页8 +- (-6)=( 4+-)+6=6平方厘米例 35.如图,三角形 OAB 是等腰三角形, OBC 是扇形, OB=5 厘米,求阴影部分的面积。解:将两个同样的图形拼在一起成为圆减等腰直角三角形 4-55 2=(-)2=3.5625 平方厘米例 36.如图 1910 所示,两圆半径都是1 厘米,且图中两个阴影部分的面积相等。求长方形 ABO1O 的面积。B 解:因为两圆

16、的半径相等,所以两个扇形中的空白部分相等。又因为图中两个阴影部分的面积相等,所以扇形的面积等于长方形面积的一半(如图1910 右图所示)。所以3.14121421.57(平方厘米)答:长方形长方形ABO1O 的面积是 1.57平方厘米。例 37.如图 1914 所示,求阴影部分的面积(单位:厘米) 。解:我们可以把三角形ABC 看成是长方形的一部分,把它还原成长方形后(如右图所示),因为原大三角形的面积与后加上的三角形面积相等,并且空白部分的两组三角形面积分别相等,所以I 和 II 的面积相等。6424(平方厘米)答:阴影部分的面积是24 平方厘米。例 38 如图 1918 所示,图中圆的直径

17、AB 是 4 厘米,平行四边形ABCD 的面积是 7 平方A OO 1914 C D A B E46II I 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 8 页,共 29 页9 厘米, ABC30 度,求阴影部分的面积(得数保留两位小数)。解:阴影部分的面积等于平行四边形的面积减去扇形AOC 的面积,再减去三角形BOC 的面积。半径: 422(厘米)扇形的圆心角: 180(180302)60(度)扇形的面积: 223.14603602.09(平方厘米)三角形 BOC 的面积: 7221.75(平方厘米)7(2.09+1.75)3.16(平方厘米

18、)答:阴影部分的面积是3.16 平方厘米。组合图形的周长与面积练习题圆的周长和面积 ( 一) 【知识要点 】 :用剪拼移补的方法计算组合图形的面积1、计算下面图形中涂色部分的面积。 (单位:厘米 ) 3 1 5 3 2、求下面图形中涂色部分的面积。 (单位:厘米 ) 5 5 8 3、下面两个圆中直角等腰三角形的面积都是5 平方厘米,求圆的面积。 O 4、如下图示, AB 4 厘米,求涂色部分的面积。1918 A B O C D A B O C D 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 9 页,共 29 页10 (甲)(乙)A O B 5.

19、 求阴影面积15 厘米6、如下图所示,一个圆的周长是15.7 厘米,求长方形的面积。圆的周长和面积 (二) 一、关键问题:对于组合图形的面积,可以通过把其中的部分图形进行平移,翻折或旋转,化难为易。二、典型例题:(一)基础部分:1、例 1、将半径分别是3 厘米和 2 厘米的两个半圆如图放置,求阴影部分的周长。2、例 2、求图中阴影部分的面积(单位:厘米)3、例 3、求图中阴影部分的面积(单位:厘米)(二)拓展部分:1、例 1:两条细绳各自牢牢地绑住如(甲) (乙)两图所示的卷筒纸,每个卷筒纸的半径是 10 。请问这两条细绳的长度分别是几厘米?2 厘米3 厘米O1 O6 6 6 4 o 精选学习

20、资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 10 页,共 29 页11 三、热身演练:(一)基础练习:1、如图:正方形的边长是5 厘米,那么阴影部分的周长是多少厘米?2、求阴影部分的周长。3、计算下面图形中阴影部分的面积(单位:厘米)4、计算下面图形中阴影部分的面积(单位:厘米)(二)拓展练习:1、有 7 根直径都是 2 分米的圆柱形木棍,想用一根绳子把它们捆成一捆,最短需要多少米长的绳子?(打结用的绳长不计)2、直径均为 1 米的四根管子被一根金属带紧紧地捆在一起,(如图) ,试求金属带的长度。3、求下面图形中阴影部分的面积(单位:厘米)。4 4 6

21、 6 6 6 5 o 2 45o3 o 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 11 页,共 29 页12 4、下图:大圆直径上的所有小圆的周长之和与大圆的周长有什么关系?如果小圆的直径分别是 3 厘米、1 厘米、 4 厘米、 2 厘米。请求出大圆直径上所有小圆的周长之和,以及大圆的周长。5、下图:小圆的周长是12.56厘米,环形的宽度是2 厘米,请求出环形的面积。6、下图:长方形的长是6 厘米,宽是 3 厘米。请求出阴影部分的面积。7、下图:大正方形的边长是10 厘米,小正方形的边长是8 厘米,请求出阴影部分的面积。8、求出下图阴影部分的

22、面积。9、求出下图阴影部分的面积。精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 12 页,共 29 页13 10、下图:正方形的边长是5 厘米,请求出阴影部分的面积。阴影部分占正方形的百分之几?11、下图是由两个边长是5 厘米正方形的拼成长方形,请求出阴影部分的面积。12、下图正方形的面积是8 平方厘米,画出其对称轴,并求出阴影部分的面积。13、下面正方形的边长是5 厘米,请求出阴影部分的面积。14、根据上图,以及上图的条件求出阴影部分的面积。15、下图:圆的周长是25.15 厘米,请求出阴影部分的面积。精选学习资料 - - - - - - -

23、- - 名师归纳总结 - - - - - - -第 13 页,共 29 页14 16、下图:直角三角形的两直角边分别是8 厘米, 6 厘米,斜边是三角形周长的125,求出阴影部分的面积。17、下图:正方形的边长是5 厘米,请求出阴影部分的面积。18、 如图 8,已知 EO=8,求阴影部分的周长和面积。19、 如图 10,求阴影部分的周长和面积。(单位:)精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 14 页,共 29 页15 20、如图 11,求阴影部分的面积及阴影弧线长的和。(单位:)21、如图 12, 已经 半圆的 直径 为 10 ,求 阴

24、部 分的 面积 及阴 影 弧线 长的 和。22、如下图,已知 AB=12厘米,且阴影部分甲的面积比阴影部分乙的面积大12 平方厘米。精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 15 页,共 29 页16 求 BC的长是多少厘米?23、如下图,求出阴影部分的周长和面积。 (单位:)24、如下图,已知 AC=CD=DB=2,求阴影部分的周长和面积。25、已经半圆的直径为9 ,求阴影部分的面积。26、如下图,求阴影部分的周长与面积。(单位:)27、如图所示,圆的周长为12.56 厘米,AC 两点把圆分成相等的两段弧,阴影部分(1)的面积与阴影部分(

25、2)的面积相等,求平行四边形ABCD 的面积。C 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 16 页,共 29 页17 28、如图所示,直径BC8 厘米, ABAC,D 为 AC 的重点,求阴影部分的面积。29、如图所示, ABBC8 厘米,求阴影部分的面积。30、如图所示,求四边形ABCD 的面积。 (单位:厘米)31、如图 1916 所示, BE 长 5 厘米,长方形 AEFD 面积是 38平方厘米。求 CD 的长度。32.图 1917 是两个完全一样的直角三角形重叠在一起,按照图中的已知条件求阴影部分的面积(单位:厘米)。D A C B

26、 1 2 A C B D 8 A B c 457 3 C D A B B C D A E 38 F 1916 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 17 页,共 29 页18 33、如图 1919 所示,115 度,圆的周长位 62.8厘米,平行四边形的面积为100 平方厘米。求阴影部分的面积(得数保留两位小数)。34、如图 1920 所示,三角形 ABC 的面积是 31.2 平方厘米, 圆的直径 AC6 厘米,BD:DC3:1。求阴影部分的面积。35、如图 1921 所示,求阴影部分的面积(单位:厘米。得数保留两位小数)。三角形面积计算

27、【例题 1】已知如图,三角形ABC的面积为 8 平方厘米, AE ED ,BD=2/3BC ,求阴影部分的面积。【思路导航】阴影部分为两个三角形,但三角形AEF的面积无法直接计算。由于 AE=ED, 连接 DF , 可知 SAEF=S EDF (等底等高),采用移补的方法,将所求阴影部分转化为求三角形BDF的面积。因为 BD=2/3BC ,所以 SBDF 2SDCF 。又因为 AE ED ,所以 SABF SBDF 2SDCF 。因此, SABC 5 SDCF 。由于 SABC 8 平方厘米,所以SDCF 851.6(平方厘米),则阴影部分的面积为1.6 23.2(平方厘米)。练习 1:1如图

28、, AE ED ,BC=3BD ,SABC 30 平方厘米。求阴影部分的面积。O A B D C 30 40 1917 120 5 1919 A B O 1920 6030A B C 12 5.2 1921 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 18 页,共 29 页19 2如图所示, AE=ED ,DC 1/3BD,SABC 21 平方厘米。求阴影部分的面积。3如图所示, DE 1/2AE,BD 2DC ,SEBD 5 平方厘米。求三角形 ABC的面积。【例题 2】两条对角线把梯形ABCD 分割成四个三角形, 如图所示,已知两个三角形的

29、面积,求另两个三角形的面积各是多少?【思路导航】 已知 SBOC 是 SDOC 的 2 倍,且高相等, 可知:BO2DO ;从 SABD与 SACD 相等(等底等高)可知: SABO等于6,而 ABO 与AOD 的高相等,底是 AOD 的 2 倍。所以 AOD 的面积为 623。因为 SABD与 SACD 等底等高所以 SABO 6 因为 SBOC 是 SDOC 的 2 倍所以ABO 是AOD 的 2 倍所以 AOD 623。答: AOD 的面积是 3。练习 2:1两条对角线把梯形ABCD 分割成四个三角形,(如图所示),已知两个三角形的面积,求另两个三角形的面积是多少?2 已知 AO 1/3

30、OC , 求梯形 ABCD 的面积(如图所示)。精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 19 页,共 29 页20 3已知三角形 AOB 的面积为 15 平方厘米,线段 OB的长度为 OD 的 3 倍。求梯形 ABCD 的面积。 (如图所示)。【例题 3】四边形 ABCD 的对角线 BD被 E、F 两点三等分,且四边形 AECF 的面积为 15 平方厘米。求四边形 ABCD 的面积 (如图所示)。【思路导航】由于 E、F 三等分 BD ,所以三角形 ABE 、AEF 、AFD是等底等高的三角形,它们的面积相等。同理,三角形BEC 、CEF

31、、CFD的面积也相等。 由此可知,三角形 ABD的面积是三角形 AEF面积的 3倍,三角形 BCD 的面积是三角形CEF面积的 3 倍,从而得出四边形ABCD 的面积是四边形 AECF 面积的 3 倍。15345(平方厘米)答:四边形 ABCD 的面积为 45 平方厘米。练习 3:1四边形 ABCD 的对角线 BD被 E、F、G三点四等分, 且四边形 AECG 的面积为 15平方厘米。求四边形 ABCD 的面积(如图)。2已知四边形 ABCD 的对角线被 E、F、G三点四等分,且阴影部分面积为15 平方厘米。求四边形 ABCD 的面积(如图所示)。3如图所示,求阴影部分的面积(ABCD 为正方

32、形)。【例题 4】如图所示, BO 2DO ,阴影部分的面积是4 平方厘米。那么,梯形ABCD 的面积是多少平方厘米?【思路导航】因为 BO 2DO ,取 BO中点 E,连接 AE 。根据三角形等底精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 20 页,共 29 页21 等高面积相等的性质,可知SDBC SCDA ;SCOB SDOA 4,类推可得每个三角形的面积。所以,SCDO 422(平方厘米) SDAB 4312平方厘米S梯形 ABCD 12+4+218(平方厘米)答:梯形 ABCD 的面积是 18 平方厘米。练习 4:1如图所示,阴影部分

33、面积是4 平方厘米, OC 2AO 。求梯形面积。2 已知 OC 2AO , SBOC 14平方厘米。求梯形的面积(如图所示)。3已知SAOB 6 平方厘米。 OC 3AO ,求梯形的面积(如图所示) 。【例题 5】如图所示,长方形ADEF 的面积是 16,三角形 ADB的面积是 3,三角形 ACF的面积是 4,求三角形 ABC的面积。【思路导航】连接AE 。仔细观察添加辅助线AE后,使问题可有如下解法。由图上看出:三角形 ADE的面积等于长方形面积的一半( 162)8。用 8 减去 3 得到三角形ABE的面积为 5。同理,用 8 减去 4 得到三角形AEC的面积也为 4。因此可知三角形AEC

34、与三角形 ACF等底等高, C为 EF的中点,而三角形 ABE与三角形 BEC等底,高是三角形BEC的 2 倍,三角形 BEC的面积为 522.5 ,所以,三角形 ABC的面积为 16342.5 6.5 。练习 5:1如图所示,长方形 ABCD 的面积是 20 平方厘米,三角形 ADF的面积为 5 平方厘米,三角形 ABE的面积为 7 平方厘米,求三角形AEF的面积。2如图所示,长方形ABCD 的面积为 20 平方厘米, SABE 4 平方厘米, SAFD 6 平方厘米,求三角形 AEF的面积。精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 21

35、页,共 29 页22 3如图所示,长方形ABCD 的面积为 24 平方厘米,三角形ABE 、AFD的面积均为 4 平方厘米,求三角形AEF的面积。简单几何体的表面积与体积的计算一、四种常见几何体的平面展开图1. 正方体沿正方体的某些棱将正方体剪开铺平,就可以得到它的平面展开图,这一展开图是由六个全等的正方形组成的,见图61。图 6l 只是正方体平面展开图的一种画法,还有别的画法(从略)。2. 长方体沿长方体的某些棱将长方体剪开铺平,就可以得到它的平面展开图。这一展开图是六个两两彼此全等的长方形组成的,见图62。图 62 只是长方体平面展开图的一种画法,还有别的画法(从略)。精选学习资料 - -

36、 - - - - - - - 名师归纳总结 - - - - - - -第 22 页,共 29 页23 3. (直)圆柱体沿圆柱的一条母线和侧面与上、下底面的交线将圆柱剪开铺平,就得到圆柱体的平面展开图。它由一个长方形和两个全等的圆组成,这个长方形的长是圆柱底面圆的周长,宽是圆柱体的高。这个长方形又叫圆柱的侧面展开图。图63 就是圆柱的平面展开图。4. (直)圆锥体沿圆锥体的一条母线和侧面与下底面圆的交线将圆锥体剪开铺平,就得到圆锥的平面展开图。它是由一个半径为圆锥体的母线长,弧长等于圆锥体底面圆的周长的扇形和一个圆组成的,这个扇形又叫圆锥的侧面展开图。具体图形见图64。二、四种常见几何体表面积

37、与体积公式1. 长方体长方体的表面积=2( ab+bc+ca)长方体的体积=abc(这里 a、b、 c 分别表示长方体的长、宽、高)。2. 正方体正方体的表面积=6a2正方体的体积=a3(这里 a 为正方体的棱长)。3. 圆柱体精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 23 页,共 29 页24 圆柱体的侧面积=2Rh 圆柱体的全面积=2Rh+2R2=2R( h+R )圆柱体的体积= R2h(这里 R表示圆柱体底面圆的半径,h 表示圆柱的高)。4. 圆锥体圆锥体的侧面积=Rl 圆锥体的全面积=Rl+ R2母线长与高)。三、例题选讲例 1 图

38、65 中的几何体是一个正方体,图 66 是这个正方体的一个平面展开图,图 67(a)、 (b)、(c)也是这个正方体的平面展开图,但每一展开图上都有四个面上的图案没画出来,请你给补上。分析与解: 从图 65 和图 66 中可知:与;与;与互相处于相对面的位置上。只要在图67 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 24 页,共 29 页25 (a)、( b)、( c)三个展开图中,判定谁与谁处在互为对面的位置上,则标有数字的四个空白面上的图案便可以补上。先看图 6 7 中的( a),仔细观察可知,1 与 4,3 与处在互为对面的位置上。再看

39、图 6 7 中的( b),同上, 1 与 3,2 与处在互为对面的位置上。最后再看图67 中的( c),同上, 1 与, 2 与 4 处在互为对面的位置上。图 67(a)、( b)、( c)标有数字的空白面上的图案见图68 中的( a)、( b)、( c)。例 2 图 69 中的几何体是一个长方体,四边形 APQC 是长方体的一个截面(即过长方体上四点A、P、Q、C的平面与长方体相交所得到的图形),P、Q分别为棱A1B1 、B1C1的中点,请在此长方体的平面展图上,标出线段AC 、CQ 、 QP 、PA来。分析与解: 只要能正确画出图69 中长方体的平面展开图,问题便能迎刃而解。图6 10 中

40、的粗实线,就是题目中所要标出的线段AC 、CQ 、 QP 、PA 。精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 25 页,共 29 页26 例 3 在图 611 中, M 、N是圆柱体的同一条母线上且位于上、下底面上的两点,若从M点绕圆柱体的侧面到达N ,沿怎么样的路线路程最短?分析与解: 沿圆柱体的母线MN将圆柱的侧面剪开铺平,得出圆柱的侧面展开图,见图6 12,从 M点绕圆柱体的侧面到达N点。实际上是从侧面展开图的长方形的一个顶点M到达不相邻的另一个顶点N。而两点间以线段的长度最短。所以最短路线就是侧面展开图中长方形的一条对角线,见图612

41、 和图 613。例 4 图 614 中的几何体是一棱长为4 厘米的正方体, 若在它的各个面的中心位置上,各打一个直径为2 厘米,深为1 厘米的圆柱形的孔,求打孔后几何体的表面积是多少(=3.14 )?精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 26 页,共 29 页27 分析与解: 因为正方体的棱长为2 厘米,而孔深只有1 厘米,所以正方体没有被打透。这一来打孔后所得几何体的表面积,等于原来正方体的表面积,再加上六个完全一样的圆柱的侧面积、这六个圆柱的高为 1 厘米,底面圆的半径为1 厘米。正方体的表面积为426=96(平方厘米)一个圆柱的侧面

42、积为2 11=6.28 (平方厘米)几何体的表面积为96+6.28 6=133.68 (平方厘米)答:(略)例 5 图 615 是由 18 个边长为1 厘米的小正方体拼成的几何体,求此几何体的表面积是多少?分析与解:从图 615 中可以看出,18 个小正方体一共摆了三层,第一层 2个, 第二层 7个, 因为 18-7-2=9 ,所以第三层摆了9 个。另外,上、下两个面的表面积是相同的,同样,前、后;左、右两个面的表面积也是分别相同的。因为小正方体的棱长是1 厘米,所以上面的表面积为129=9(平方厘米)前面的表面积为128=8(平方厘米)左面的表面积为127=7(平方厘米)几何体的表面积为92

43、+82+72= 答:(略)精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 27 页,共 29 页28 例 6 图 616 中所示图形,是一个底面直径为20 厘米的装有一部分水的圆柱形玻璃杯,水中放着一个底面直径为6 厘米, 高 20 厘米的一个圆锥体铅锤,当铅锤从水中取出后,杯里的水将下降几厘米?(=3.14 )分析与解: 因为玻璃杯是圆柱形的,所以铅锤取出后,水面下降部分实际是一个小圆柱,这个圆柱的底面与玻璃杯的底面一样,是一直径为20 厘米的圆,它的体积正好等于圆锥体铅锤的体积,这个小圆柱的高就是水面下降的高度。因为圆锥形铅锤的体积为设水面下降

44、的高度为x,则小圆柱的体积为x(202)2x=100 x(立方厘米)所以有下列方程:60 =100 x,解此方程得:x=0.6 (厘米)答:铅锤取出后,杯中水面下降了0.6 厘米。例 7 横截面直径为2 分米的一根圆钢,截成两段后,两段表面积的和为75.36 平方分米,求原来那根圆钢的体积是多少(=3.14 )?分析与解: 根据圆柱体的体积公式,体积=底面积高。假设圆钢长为x,因为将圆钢截成两段后,两段表面积的和,等于圆钢的侧面积加上四个底面圆的面积,所以有下面式子:2( 22) x+4( 22)2=2 x+4精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 28 页,共 29 页29 根据题目中给出的已知条件,可得下面方程:2x+4=75.36 解方程:圆钢的体积为(22)21031.4 (立方分米)答:(略)。精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 29 页,共 29 页

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 高考资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁