《苏教版初三数学知识点.docx》由会员分享,可在线阅读,更多相关《苏教版初三数学知识点.docx(6页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、文本为Word版本,下载可任意编辑苏教版初三数学知识点 以下是本人为大家准备的苏教版初三数学知识点,供您借鉴。 一元一次方程: 在一个方程中,只含有一个未知数,并且未知数的指数是1,这样的方程叫一元一次方程。 等式两边同时加上或减去或乘以或除以(不为0)一个代数式,所得结果仍是等式。 解一元一次方程的步骤: 去分母,移项,合并同类项,未知数系数化为1。 二元一次方程:含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程。 二元一次方程组:两个二元一次方程组成的方程组叫做二元一次方程组。适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。二元一次方程组中各个方程的
2、公共解,叫做这个二元一次方程的解。 解二元一次方程组的方法:代入消元法/加减消元法。 2:不等式与不等式组 不等式: 用符号=号连接的式子叫不等式。 不等式的两边都加上或减去同一个整式,不等号的方向不变。 不等式的两边都乘以或者除以一个正数,不等号方向不变。 不等式的两边都乘以或除以同一个负数,不等号方向相反。 不等式的解集: 能使不等式成立的未知数的值,叫做不等式的解。 一个含有未知数的不等式的所有解,组成这个不等式的解集。 求不等式解集的过程叫做解不等式。 一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的次数是1的不等式叫一元一次不等式。 一元一次不等式组: 关于同一个未知数
3、的几个一元一次不等式合在一起,就组成了一元一次不等式组。 一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。 求不等式组解集的过程,叫做解不等式组。 3:函数 变量:因变量,自变量。在用图象表示变量之间的关系时,通常用水平方向的数轴上的点自变量,用竖直方向的数轴上的点表示因变量。 一次函数: 若两个变量X,Y间的关系式可以表示成Y=KX+B(B为常数,K不等于0)的形式,则称Y是X的一次函数。 当B=0时,称Y是X的正比例函数。 一次函数的图象: 把一个函数的自变量X与对应的因变量Y的值分别作为点的横坐标与纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫
4、做该函数的图象。 正比例函数Y=KX的图象是经过原点的一条直线。 在一次函数中,当K0,BO,则经234象限;当K0,B0时,则经124象限;当K0,B0时,则经134象限;当K0,B0时,则经123象限。 当K0时,Y的值随X值的增大而增大,当X0时,Y的值随X值的增大而减少。 二、空间与图形 A:图形的认识: 1:点,线,面 点,线,面: 图形是由点,线,面构成的。 面与面相交得线,线与线相交得点。 点动成线,线动成面,面动成体。 展开与折叠: 在棱柱中,任何相邻的两个面的交线叫做棱,侧棱是相邻两个侧面的交线,棱柱的所有侧棱长相等,棱柱的上下底面的形状相同,侧面的形状都是长方体。 N棱柱就
5、是底面图形有N条边的棱柱。 截一个几何体:用一个平面去截一个图形,截出的面叫做截面。 3视图:主视图,左视图,俯视图。 多边形:他们是由一些不在同一条直线上的线段依次首尾相连组成的封闭图形。 弧,扇形: 由一条弧和经过这条弧的端点的两条半径所组成的图形叫扇形。 圆可以分割成若干个扇形。 2:角 线: 线段有两个端点。 将线段向一个方向无限延长就形成了射线。射线只有一个端点。 将线段的两端无限延长就形成了直线。直线没有端点。 经过两点有且只有一条直线。 比较长短: 两点之间的所有连线中,线段最短。 两点之间线段的长度,叫做这两点之间的距离。 角的度量与表示: 角由两条具有公共端点的射线组成,两条
6、射线的公共端点是这个角的顶点。 一度的1/60是一分,一分的1/60是一秒。 角的比较: 角也可以看成是由一条射线绕着他的端点旋转而成的。 一条射线绕着他的端点旋转,当终边和始边成一条直线时,所成的角叫做平角。始边继续旋转,当他又和始边重合时,所成的角叫做周角。 从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。 平行: 同一平面内,不相交的两条直线叫做平行线。 经过直线外一点,有且只有一条直线与这条直线平行。 如果两条直线都与第3条直线平行,那么这两条直线互相平行。 垂直: 如果两条直线相交成直角,那么这两条直线互相垂直。 互相垂直的两条直线的交点叫做垂足。 平面内,过一点有且只有一条直线与已知直线垂直。 3:相交线与平行线 角: 如果两个角的和是直角,那么称和两个角互为余角;如果两个角的和是平角,那么称这两个角互为补角。 同角或等角的余角/补角相等。 对顶角相等。 同位角相等/内错角相等/同旁内角互补,两直线平行,反之亦然。 第 6 页 共 6 页