《中考数学常见解题技巧方法总结.docx》由会员分享,可在线阅读,更多相关《中考数学常见解题技巧方法总结.docx(34页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、文本为Word版本,下载可任意编辑中考数学常见解题技巧方法总结中考数学常见解题技巧方法总结 篇1 1、线段、角的计算与证明 中考的解答题一般是分两到三部分的。第一部分基本上都是一些简单题或者中档题,目的在于考察基础。第二部分往往就是开始拉分的中难题了。对这些题轻松掌握的意义不仅仅在于获得分数,更重要的是对于整个做题过程中士气,军心的影响。 2、一元二次方程与函数 在这一类问题当中,尤以涉及的动态几何问题最为艰难。几何问题的难点在于想象,构造,往往有时候一条辅助线没有想到,整个一道题就卡壳了。相比几何综合题来说,代数综合题倒不需要太多巧妙的方法,但是对考生的计算能力以及代数功底有了比较高的要求。
2、中考数学当中,代数问题往往是以一元二次方程与二次函数为主体,多种其他知识点辅助的形式出现的。一元二次方程与二次函数问题当中,纯粹的一元二次方程解法通常会以简单解答题的方式考察。但是在后面的中难档大题当中,通常会和根的判别式,整数根和抛物线等知识点结合。 3、多种函数交叉综合问题 初中数学所涉及的函数就一次函数,反比例函数以及二次函数。这类题目本身并不会太难,很少作为压轴题出现,一般都是作为一道中档次题目来考察考生对于一次函数以及反比例函数的掌握。所以在中考中面对这类问题,一定要做到避免失分。 4、列方程(组)解应用题 在中考中,有一类题目说难不难,说不难又难,有的时候三两下就有了思路,有的时候
3、苦思冥想很久也没有想法,这就是列方程或方程组解应用题。方程可以说是初中数学当中最重要的部分,所以也是中考中必考内容。从近年来的中考来看,结合时事热点考的比较多,所以还需要考生有一些生活经验。实际考试中,这类题目几乎要么得全分,要么一分不得,但是也就那么几种题型,所以考生只需多练多掌握各个题类,总结出一些定式,就可以从容应对了。 5、动态几何与函数问题 整体说来,代几综合题大概有两个侧重,第一个是侧重几何方面,利用几何图形的性质结合代数知识来考察。而另一个则是侧重代数方面,几何性质只是一个引入点,更多的考察了考生的计算功夫。但是这两种侧重也没有很严格的分野,很多题型都很类似。其中通过图中已给几何
4、图形构建函数是重点考察对象。做这类题时一定要有“减少复杂性”“增大灵活性”的主体思想。 6、几何图形的归纳、猜想问题 中考加大了对考生归纳,总结,猜想这方面能力的考察,但是由于数列的系统知识要到高中才会正式考察,所以大多放在填空压轴题来出。对于这类归纳总结问题来说,思考的方法是最重要的。 中考数学常见解题技巧方法总结 篇2 选择题的解法 中考数学试题主要是为了凸现能力,小题一般要小做,除了直接法解答外,还要注意巧解,各位同学在做中考数学选择题时善于使用数形结合、特值(含特殊值、特殊位置、特殊图形、特殊角度、特殊体等等)、排除、验证、转化、分析、估算等方法,一旦思路清晰,就迅速作答。不要在一两个
5、小题上纠缠,如果确实没有思路,可先蒙一个,并做标记,即使是“蒙”也有25%的胜率,后面有剩余时间可以选择重新做。 填空题的解法 由于中考数学填空题和选择题有相似之处,所以有些解题方法、策略可以共用。中考数学填空题要认真运算,表达结果必须数值准确、形式规范,否则将前功尽弃,因为填空题无过程分。 函数型综合题 此类中考数学解答题是将定直角坐标系和几何图形直接给中考考生,先求函数的解析式,再进行图形的研究,求点的坐标或研究图形的某些性质。求已知函数的解析式主要方法是待定系数法,关键是求点的坐标,而求点的坐标基本方法是几何法(图形法)和代数法(解析法)。 几何型综合题 此类中考数学解答题是先给中考考生
6、规定几何图形,根据已知条件进行计算,然后有动点(或动线段)运动,对应产生线段、面积等的变化,求对应的(未知)函数的解析式,求函数的自变量的取值范围,最后根据所求的函数关系进行探索研究。 中考数学压轴题 中考数学试卷中的压轴题是很多中考考生所苦恼的,在回答中考数学压轴题时需要掌握的答题技巧有以下几点: 1、压轴题难度有约定:历年的中考数学压轴题一般都由3个小题组成。第(1)题容易上手,得分率在0.8以上;第(2)题稍难,一般还是属于常规题型,得分率在0.6与0.7之间,第(3)题较难,能力要求较高,但得分率也大多在0.3与0.4之间。近十年来,最后小题的得分率在0.3以下的情况,只是偶尔发生,但
7、一旦发生,就会引起各方关注。控制压轴题的难度已成为各届命题组的共识,“起点低,坡度缓,尾巴略翘”已成为上海数学试卷设计的一大特色,以往上海卷的压轴题大多不偏不怪,得分率稳定在0.5与0.6之间,即考生的平均得分在7分或8分。由此可见,压轴题也并不可怕。 2、分析结构理清关系:解决中考数学压轴题时,要注意它的逻辑结构,搞清楚它的各个小题之间的关系是“平列”的,还是“递进”的,这一点非常重要。如去年第25题的(1)、(2)、(3)三个小题是平列关系,它们分别以大题的已知为条件进行解题,(1)的结论与(2)的解题无关,(2)的结论与(3)的解题无关,整个大题由这三个小题“拼装”而成。 3、应对策略必
8、须抓牢:学生害怕“中考数学压轴题”,恐怕与“题海战术”有关。中考前,盲目地多做难题是有害的。从外省市中考卷或从前几年各区模拟考卷中选题时,特别要留意它是否超出今年中考的考查范围。我认为压轴题的解题能力不能靠一时一日的“拔苗助长”而要靠日积月累的培养和训练。在总复习阶段,对大部分学生而言,放弃一些难题和大题,多做一些中档的变式题和小题,反而能使他们得益。 中考数学常见解题技巧方法总结 篇3 1、配方法 所谓的配方法公式是就是把一个解析式利用恒等变形的方法,将一些术语匹配成一个或几个多项式正整数幂的形式。通过公式求解数学问题的方法称为匹配方法。其中,常用的是匹配成完全扁平的方式。匹配方法是数学中身
9、份转换的重要方法。它广泛应用于因子分解,简化,方程解,方程和不等式明,函数极值和解析表达式。 2、因式分解法 因式分解是将多项式转换为几个积分的乘积。因子分解是身份变形的基础,在解决代数,几何和三角问题中起着重要作用。因子分解的方法很多,除了中学教科书上关于公因子法的提取,公式法,分组分解法,交叉乘法法等,还有诸如使用术语加法,根分解等,未确定系数等。 3、换元法 换元法是数学中非常重要且广泛使用的方法。我们通常将未知或变量称为元素。所谓的替换方法是用新变量替换原始公式的一部分,或者在相对复杂的数学公式中修改原始公式,以简化它并使问题易于解决。 4、判别方法和韦达定理 一元二次方程ax2+bx
10、+c=0(a,b,c属于R,a0)根辨别,delta=b2-4ac,不仅用于确定根的性质,而且作为一种求解方法问题,代数变形,解方程(群),解不等式,研究函数甚至几何,三角运算具有非常广泛的应用。 5、待定系数法 在解决数学问题时,如果首先确定结果的欲望有一定的形式,其中包含一些未确定的系数,然后根据未确定系数方程组的设定条件,解决这些未确定的系数值或找到这些系数之间的关系未确定系数,从而解决数学问题,这种问题解决方法称为未确定系数的方法。它是中学数学中常用的方法之一。 6、反法 反法是间接明。这是一种方法,通过这种方法首先提出与的结论相反的设,然后,从这个设,通过正确的推理,导致矛盾,从而否
11、定相反的设,从而肯定了正确性。原始。矛盾明可以分为矛盾的简化荒谬明(结论的反面只有一种)和矛盾的穷举明(结论的反面不止一种)。通过矛盾明的步骤一般分为: (1)反设; (2)减少; (3)结论。 7、面积法 平面几何中的面积公式和与面积公式导出的面积计算相关的属性定理不仅可以用于计算面积,而且还可以明平面几何问题有时会得到两倍的结果。使用面积关系来明或计算平面几何问题称为面积法,这是几何中的常用方法。 8、客观问题解决方法 多项选择题是提供条件和结论的问题,需要基于某种关系的正确。选择题设计精巧,形式灵活,可以全面检验学生的基本知识和技能,从而提高考试的能力和知识的覆盖面。 中考数学常见解题技
12、巧方法总结 篇4 大胆取舍确保中考数学相对高分 “有所不为才能有所为,大胆取舍,才能确保中考数学相对高分。”针对中考数学如何备考,著名数学特级老师说,这几个月的备考一定要有选择。 “首先,要进行一次全面的基础内容复习,不能有所遗漏;其次,一定要立足于基础和难易度适中,太难的可以放弃。在全面复习的基础上,再次把掌握得似懂非懂,知道但又不是很清楚的地方搞清楚。在做题练习上要学会选择,决不能不加取舍地做题,即便是老师布置的作业,也建议同学们选择性地做,已经掌握得很好的不要多做,把好像会做但又不能肯定的题认真做一做,把根本没有感觉的难题放弃不做。千万不要到处去找各个学校的考试题来做,因为这没有针对性,
13、浪费时间和精力。” 做到基本知识不丢一分 某外国语学校资深中考数学老师建议考生在中考数学的备考中强化知识网络的梳理,并熟练掌握中考考纲要求的知识点。 “首先要梳理知识网络,思路清晰知己知彼。思考中学数学学了什么,教材在排版上有什么规律,琢磨这两个问题其实就是要梳理好知识网络,对知识做到心中有谱。”他说,“其次要掌握数学考纲,对考试心中有谱。掌握今年中考数学的考纲,用考纲来统领知识大纲,掌握好必要的基础知识和过好基本的计算关,做到基本知识不丢一分,那就离做好中考数学的答卷又近了一步。根据考纲和自己的实际情况来侧重复习,也能提高有限时间的利用效率。” 做好中考数学的最后冲刺 广州中考研究中心老师表
14、示,距离中考越来越近,一方面需按照学校的复习进度正常学习,另一方面由于每个人学习情况不一样,自己还需进行知识点和丢分题型的双重查漏补缺,找准短板,准确修复。 压轴题坚持每天一道,并及时总结方法,错题本就发挥作用了。最后每周练习一套中考模拟卷,及时总结考试问题。我们做题的原则是先搞懂搞透错题,再做新题。如果没有时间做新题,多花时间思考、沉淀错题是更有效的学习方法。 中考是一场选拔性的考试,紧张是难免的,只要不过度紧张,适度紧张也是必要的,而且紧张的不是你一个人,大家都紧张。最后要明白决定中考成败的不是压轴题而是简单题,千万不要在难题上不舍得,做到会做的题不丢分就好,这就需要你平时做题专注用心。
15、平时养成好的答题习惯 练兵千日,用在一时,关于中考应考技巧有几点做法:解题习惯要端正,由于是电脑阅卷,所以平时答题时就养成左对齐按列写的答题习惯;阅题习惯的养成,中考都会提前发卷,考生可利用这段时间,将试卷浏览一遍,大致了解题量、题型,了解试题的难易度,做到心中有数,通览全卷,把握全局。答题习惯上,先易后难,合理支配答题时间。进入考场后考生特别紧张,可轻拍几下额头,做几个深呼吸,紧张的情绪就会得到缓解。 中考数学常见解题技巧方法总结 篇5 初中数学解题思路的获得,一般要经历三个步骤: 1.从理解题意中提取有用的信息,如数式特点,图形结构特征等; 2.从记忆储存中提取相关的信息,如有关公式,定理
16、,基本模式等; 3.将上述两组信息进行有效重组,使之成为一个合乎逻辑的和谐结构。 数学的表达,有3种方式: 1.文字语言,即用汉字表达的内容; 2.图形语言,如几何的图形,函数的图象; 3.符号语言,即用数学符号表达的内容,比如ABCD。 在初中学段中,不仅要学好数学知识,同时也要注意数学思想方法的学习,掌握好思想和方法,对数学的学习将会起到事半功倍的良好效果。其中整体与分类、类比与联想、转化与化归和数形结合等不仅仅是学好数学的重要思想,同时对您今后的生活也必将起重要的作用。 先来看转化思想: 我们知道任何事物都在不断的运动,也就是转化和变化。在生活中,为了解决一个具体问题,不论它有多复杂,我
17、们都会把它简单化,熟悉化以后再去解决。体现在数学上也就是要把难的问题转化为简单的问题,把不熟悉的问题转化为熟悉的问题,把未知的问题转化为已知的问题。 如方程的学习中,一元一次方程是学习方程的基础,那么在学习二元一次方程组时,可以通过加减消元和代入消元这样的手段把二元一次方程组转化为一元一次方程来解决,转化(加减和代入)是手段,消元是目的;在学习一元二次方程时,可以通过因式分解把一元二次方程转化为两个一元一次方程,在这里,转化(分解因式)是手段,降次是目的。把未知转化为已知,把复杂转化为简单。同样,三元一次方程组可以通过加减和代入转化为二元一次方程组,再转化为一元一次方程。在几何学习中,三角形是
18、基础,可能通过连对角线等作辅助线的方法把多边形转化为多个三角形进行问题的解决。 所以,在数学学习和生活中都要注意转化思想的运用,解决问题,转化是关键。 中考数学常见解题技巧方法总结 篇6 1.如果把解题比做打仗,那么解题者的“兵器”就是数学基础知识,“兵力”就是数学基本方法,而调动数学基础知识、运用数学思想方法的数学解题思想则正是“兵法”。 2.数学家存在的主要理由就是解决问题。因此,数学的真正的组成部分是问题和解答。“问题是数学的心脏”。 3.问题反映了现有水平与客观需要的矛盾,对学生来说,就是已知和未知的矛盾。问题就是矛盾。对于学生而言,问题有三个特征: (1)接受性:学生愿意解决并且具有
19、解决它的知识基础和能力基础。 (2)障碍性:学生不能直接看出它的解法和答案,而必须经过思考才能解决。 (3)探究性:学生不能按照现成的的套路去解,需要进行探索,寻找新的处理方法。 4.练习型的问题具有教学性,它的结论为数学家或教师所已知,其之成为问题仅相对于教学或学生而言,包括一个待计算的答案、一个待证明的结论、一个待作出的图形、一个待判断的命题、一个待解决的实际问题。 5.“问题解决”有不同的解释,比较典型的观点可归纳为4种: (1)问题解决是心理活动。面临新情境、新课题,发现它与主客观需要的矛盾而自己却没有现成对策时,所引起的寻求处理办法的一种活动。 (2)问题解决是一个探究过程。把“问题
20、解决”定义为“将先前已获得的知识用于新的、不熟悉的情境的过程”。这就是说,问题解决是一个发现的过程、探索的过程、创新的过程。 (3)问题解决是一个学习目的。“学习数学的主要目的在于问题解决”。因而,学习怎样解决问题就成为学习数学的根本原因。此时,问题解决就独立于特殊的问题,独立于一般过程或方法,也独立于数学的具体内容。 (4)问题解决是一种生存能力。重视问题解决能力的培养、发展问题解决的能力,其目的之一是,在这个充满疑问、有时连问题和答案都是不确定的世界里,学习生存的本领。 6.解题研究存在一些误区,首先一个表现是,用现成的例子说明现成的观点,或用现成的观点解释现成的例子。其次一个表现是,长期
21、徘徊在一招一式的归类上,缺少观点上的提高或实质性的突破。第三个表现是,多研究“怎样解”,较少问“为什么这样解”。在这些误区里,“解题而不立法、作答而不立论”。 7.人的思维依赖于必要的知识和经验,数学知识正是数学解题思维活动的出发点与凭借。丰富的知识并加以优化的结构能为题意的本质理解与思路的迅速寻找创造成功的条件。解题研究的一代宗师波利亚说过:“货源充足和组织良好的知识仓库是一个解题者的重要资本”。 8.熟练掌握数学基础知识的体系。对于中学数学解题来说,应如数学家珍说出教材的概念系统、定理系统、符号系统。还应掌握中学数学竞赛涉及的基础理论。深刻理解数学概念、准确掌握数学定理、公式和法则。熟悉基
22、本规则和常用的方法,不断积累数学技巧。 9.数学的本质活动是思维。思维的对象是概念,思维的方式是逻辑。当这种思维与新事物接触时,将出现“相容”和“不容”的两种可能。出现“相容”时,产生新结果,且被原概念吸收,并发展成新概念;当出现“不容”时,则产生了所谓的问题。这时,思维出现迂回,甚至暂时退回原地,将原概念扩大或将原逻辑变式,直到新思维与事物相容为止。至此,也产生新的结果,也被原思维吸收。这就是一个思维活动的全过程。 中考数学常见解题技巧方法总结 篇7 1.学会运用数形结合思想 数形结合思想是指从几何直观的角度,利用几何图形的性质研究数量关系,寻求代数问题的解决方法(以形助数),或利用数量关系
23、来研究几何图形的性质,解决几何问题(以数助形)的一种数学思想。数形结合思想使数量关系和几何图形巧妙地结合起来,使问题得以解决。 纵观近几年全国各地的中考压轴题,绝大部分都是与平面直角坐标系有关,其特点是通过建立点与数即坐标之间的对应关系,一方面可用代数方法研究几何图形的性质,另一方面又可借助几何直观,得到某些代数问题的解答。 2.学会运用函数与方程思想 从分析问题的数量关系入手,适当设定未知数,把所研究的数学问题中已知量和未知量之间的数量关系,转化为方程或方程组的数学模型,从而使问题得到解决的思维方法,这就是方程思想。 用方程思想解题的关键是利用已知条件或公式、定理中的已知结论构造方程(组)。
24、这种思想在代数、几何及生活实际中有着广泛的应用。 直线与抛物线是初中数学中的两类重要函数,即一次函数与二次函数所表示的图形。因此,无论是求其解析式还是研究其性质,都离不开函数与方程的思想。例如函数解析式的确定,往往需要根据已知条件列方程或方程组并解之而得。 3.学会运用分类讨论的思想 分类讨论思想可用来检测学生思维的准确性与严密性,常常通过条件的多变性或结论的不确定性来进行考察,有些问题,如果不注意对各种情况分类讨论,就有可能造成错解或漏解,纵观近几年的中考压轴题分类讨论思想解题已成为新的热点。 在解答某些数学问题时,有时会遇到多种情况,需要对各种情况加以分类,并逐类求解,然后综合得解,这就是
25、分类讨论法。分类讨论是一种逻辑方法,是一种重要的数学思想,同时也是一种重要的解题策略,它体现了化整为零、积零为整的思想与归类整理的方法。 分类的原则: (1)分类中的每一部分是相互独立的; (2)一次分类按一个标准; (3)分类讨论应逐级进行。正确的分类必须是周全的,既不重复、也不遗漏。 4.学会运用等价转换思想 转化思想是解决数学问题的一种最基本的数学思想。在研究数学问题时,我们通常是将未知问题转化为已知的问题,将复杂的问题转化为简单的问题,将抽象的问题转化为具体的问题,将实际问题转化为数学问题。转化的非常丰富,已知与未知、数量与图形、图形与图形之间都可以通过转化来获得解决问题的转机。 任何
26、一个数学问题的解决都离不开转换的思想,初中数学中的转换大体包括由已知向未知,由复杂向简单的转换,而作为中考压轴题,更注意不同知识之间的联系与转换,一道中考压轴题一般是融代数、几何、三角于一体的综合试题,转换的思路更要得到充分的应用。 中考压轴题所考察的并非孤立的知识点,也并非个别的思想方法,它是对考生综合能力的一个全面考察,所涉及的知识面广,所使用的数学思想方法也较全面。因此有的考生对压轴题有一种恐惧感,认为自己的水平一般,做不了,甚至连看也没看就放弃了,当然也就得不到应得的分数,为了提高压轴题的得分率,考试中还需要有一种分题、分段的得分策略。 5.要学会抢得分点 一道中考数学压轴题解不出来,
27、不等于“一点不懂、一点不会”,要将整道题目解题思路转化为得分点。如中考数学压轴题一般在大题下都有两至三个小题,难易程度是第1小题较易,大部学生都能拿到分数;第2小题中等,起到承上启下的作用;第3题偏难,不过往往建立在1、2两小题的基础之上。因此,我们在解答时要把第1小题的分数一定拿到,第2小题的分数要力争拿到,第3小题的分数要争取得到,这样就大大提高了获得中考数学高分的可能性。 中考的评分标准是按照题目所考查的知识点进行评分,解对知识点、抓住得分点就会得分。因此,对于数学中考压轴题尽可能解答“靠近”得分点,限度地发挥自己的水平,把中考数学压轴题变成高分踏脚石。 解中考数学压轴题,一要树立必胜的
28、信心;二要具备扎实的基础知识和熟练的基本技能;三要掌握常用的解题策略。 中考数学常见解题技巧方法总结 篇8 1、做题时间规划 考试写不完,大部分时间花在难题上,建议1到18题25分钟做完,中考第12题或16题若卡住了,思考时间不要多于5分钟,因为做题前5分钟效率是最高的,5到10分钟左右焦虑情绪明显上升,10分钟以后已经不再想题了,而在思考做不出的严重后果,遇到难题该跳则跳。 2、避免审题丢分 考试中存在很多由于审题不仔细(多看条件、少看条件、看错条件)丢分案例。为什么会这样呢?因为我们平时做题太多,遇到类似题,审题就会思维定势,先入为主,主观臆断,不假思索认为是以前做过的题,如在抛物线对称轴
29、上找点很可能看成在抛物线上找点或者在y轴上找点;运动方向大部分题是由下往上,从左往右,习惯性以为都这样已知的;点在直线或线段上等等。一旦审错题浪费时间更多,所以审题不要着急,一个字一个字读,耐得住这份心,才能审好题。 3、学会检查 检查要专注,考查一个人的定力,有没有耐心复查已经做过的题。 当然还要检查答题卡客观题有没有誊错、格式有没有按照规定(分式方程检验、带单位、要写解和证明,分类讨论要写综上所述等等)。 最后检查计算,检查的时候要注意摆正心态。 4、遇到中档题卡住怎么办? 保持冷静,影响你的不是题目本身,而是心中杂念,这个时候跳出思维的漩涡,不应该怀疑自己的能力,更应该怀疑的是审题错了,
30、果断重新审题,或者尝试常规解题方法。 5、争取多拿意外的分 阅卷老师一般是先找答案,答案正确再看步骤,步骤不严谨扣1-2分,找不到答案或答案错误再重头看有没有能给分的,所以书写要规范、整洁。 中考数学常见解题技巧方法总结 篇9 1、数形结合思想 就是根据数学问题的条件和结论之间的内在联系,既分析其代数含义,又揭示其几何意义;使数量关系和图形巧妙和谐地结合起来,并充分利用这种结合,寻求解体思路,使问题得到解决。 2、联系与转化的思想 事物之间是相互联系、相互制约的,是可以相互转化的。数学学科的各部分之间也是相互联系,可以相互转化的。 在解题时,如果能恰当处理它们之间的相互转化,往往可以化难为易,
31、化繁为简。 如:代换转化、已知与未知的转化、特殊与一般的转化、具体与抽象的转化、部分与整体的转化、动与静的转化等等。 3、分类讨论的思想 在数学中,我们常常需要根据研究对象性质的差异,分各种不同情况予以考查;这种分类思考的方法,是一种重要的数学思想方法,同时也是一种重要的解题策略。 4、待定系数法 当我们所研究的数学式子具有某种特定形式时,要确定它,只要求出式子中待确定的字母得值就可以了。为此,把已知条件代入这个待定形式的式子中,往往会得到含待定字母的方程或方程组,然后解这个方程或方程组就使问题得到解决。 5、配方法 就是把一个代数式设法构造成平方式,然后再进行所需要的变化。配方法是初中代数中
32、重要的变形技巧,配方法在分解因式、解方程、讨论二次函数等问题,都有重要的作用。 6、换元法 在解题过程中,把某个或某些字母的式子作为一个整体,用一个新的字母表示,以便进一步解决问题的一种方法。换元法可以把一个较为复杂的式子化简,把问题归结为比原来更为基本的问题,从而达到化繁为简,化难为易的目的。 7、分析法 在研究或证明一个命题时,又结论向已知条件追溯,既从结论开始,推求它成立的充分条件,这个条件的成立还不显然;则再把它当作结论,进一步研究它成立的充分条件,直至达到已知条件为止,从而使命题得到证明。这种思维过程通常称为“执果寻因” 8、综合法 在研究或证明命题时,如果推理的方向是从已知条件开始
33、,逐步推导得到结论,这种思维过程通常称为“由因导果” 9、演绎法 由一般到特殊的推理方法。 中考数学常见解题技巧方法总结 篇10 一、答题与心态策略 1、做题顺序:一般按照试题顺序做,实在做不出来,可先放一放,先做别的题目,不要在一道题上花费太多的时间,而影响其他题目;极客数学帮特别提醒做题慢的同学,要掌握好时间,力争一次的成功率;做题速度快的同学要注意做题的质量,要细心,不要马虎; 2、解题方针:考虑各种简便方法解题,选择题、填空题更是如此; 3、作答要求:考虑到网上阅卷对答题的要求很高,所以在答题前应设计好答案的整个布局,字要大小适中,不要把答案写在规定的区域以外的地方、否则扫描时不能扫到
34、你所写的答案; 4、心态调整:调整好心理状态,解答习题时,不要浮躁,力争考出最佳水平,极客数学帮在此教大家答题时的两个心态。 (1)若试题难,遵循“你难我难,我不怕难”的原则,即如果是难题,中考数学中的难题对于大多数考生来说,都是比较难的,可以先放着,把其他简单的题做完了再来攻破,所以不要怀疑自己,得相信自己有攻破的能力; (2)若试题易,遵循“你易我易,我不大意”的原则,即不要被简单题带进坑里,越简单越不粗心大意。 接下来,极客数学帮将分别讲述选择题、填空题、解答题等方面的应试技巧和注意事项: 二、分题型的应试技巧和注意事项 1、选择题 注意选择题要看完所有选项,做选择题可运用各种解题的方法
35、,比如极客数学帮吴小平老师经常提到的直接法,特殊值法,排除法,验证法,图解法,假设法(即反证法),动手操作法(比如折一折,量一量等方法),采用淘汰法和代入检验法可节省时间。 有些判断几个命题正确个数的题目,一定要慎重,你认为错误的最好能找出反例,常见的方法如直接法,特殊值法,排除法,验证法,图解法,假设法(即反证法),动手操作法(比如折一折,量一量等方法)、采用淘汰法和代入检验法可节省时间。 2、填空题 (1)注意一题多解的情况。 (2)注意题目的隐含条件,比如二次项系数不为0,实际问题中的整数等; (3)要注意是否带单位,表达格式一定是最终化简结果; (4)求角、线段的长,实在不会时,可以尝
36、试猜测或度量法。 3、解答题 (1)注意规范答题,过程和结论都要书写规范; (2)计算题一定要细心,最后答案要最简,要保证绝对正确; (3)先化简后求值问题,要先化到最简,代入求值时要注意:分母不为零;适当考虑技巧,如整体代入; (4)解分式方程一定要检验,应用题中也是如此; (5)解直角三角形问题,注意交代辅助线的作法,解题步骤、关注直角、特殊角、取近似值时一定要按照题目要求; (6)实际应用问题,题目长,多读题,根据题意,找准关系,列方程、不等式(组)或函数关系式、注意题目当中的等量关系,是为了构造方程,不等量关系是为了求自变量的取值范围,求出方程的解后,要注意验根,是否符合实际问题,要记
37、着取舍; (7)概率题:要通过画树状图、列表或列举,列出所有等可能的结果,然后再计算概率; (8)方案设计题:要看清楚题目的设计要求,设计时考虑满足要求的最简方案,不要考虑复杂、追求美观的方案。 (9)求二次函数解析式,第一步要检验,方可解第二步(第一步不能错,一错前功尽弃); 只清楚了上面的内容还不够,极客数学帮还特地准备了更多注意事项: 三、更多注意事项: 1、对于存在性问题,要注意可能有几种情况不要遗漏; 2、对于动态问题,注意要通过多画草图的方法把运动过程搞清楚,也要考虑可能有几种情况、要注意点线的对应关系,用局部的变化来反映整体变化,通常利用平行得相似,注意临界状态,临界状态往往是自
38、变量取值的分界线。 3、注意单位、设未知数、答题的完整; 4、求字母系数时,注意检验判别式(否则要被扣分); 5、实际问题要多读题目,注意认真分析,到题目中寻找等量关系,获取信息,不放过任何一个条件(包括括号里的信息),且注意解答完整、尤其注意应用题中的圆弧型实物还是抛物线型的实物、如果是圆弧找圆心,求半径、如果是抛物线建立直角坐标系,求解析式; 6、注意如果第一步条件少,无从下手时,应认真审题,画草图寻找突破口,才能完成下面几步、注意考虑上步结论或上一步推导过程中的结论; 7、注意综合题、压轴题要解清楚,答题要完整,尽量不被扣分; 8、因式分解时,首先考虑提取公因式,再考虑公式法、一定要注意
39、最后结果要分解到不能再分为止; 9、找规律的题目,要重在找出规律,切忌盲目乱填;若是函数关系,解好一定要检验,包括自变量、若不是函数关系,应寻找指数或其它关系; 10、面积问题,中考中的面积问题往往是不规则图形,不易直接求解,往往需要借助于面积和与面积差; 11、对于压轴题,基础好的学生应力争解出每一步,方可取得高分,基础稍差的应会一步解一步,不可留空白、例如:应用题的题设,存在题的存在一定要回答; 12、在三角函数的.计算中,应把角放到直角三角形中,可以作必要的辅助线、解直角三角形的应用中要熟悉仰角、俯角、坡角、坡度等概念 13、熟悉圆中常见辅助线的规律,圆中常见辅助线: (1)见切线连圆心
40、和切点; (2)两圆相交连结公共弦和连心线(连心线垂直平分公共弦); (3)两圆相切,作连心线,连心线必过切点; (4)作直径,作弦心距,构造直角三角形,应用勾股定理; (5)作直径所对的圆周角,把要求的角转化到直角三角形中、 14、圆柱、圆锥侧面展开图、扇形面积及弧长公式,做圆锥的问题时,极客数学帮建议要抓住下面两点: (1)圆锥母线长等于侧面展开图扇形的半径、 (2)圆锥底面周长等于侧面展开图扇形的弧长、 15、求解析式: (1)正比例函数、反比例函数只要已知一个条件即可; (2)一次函数须知两个条件 (3)二次函数的三种形式:一般式、顶点式 (4)抛物线的顶点坐标、对称轴 16、反证法第
41、一步应假设与结论相反的情况; 17、与对称图形有关的注意事项: (1)是轴对称图形但不是中心对称的图形有:角、等腰三角形、等边三角形、等腰梯形、正n边形(n为奇数); (2)是中心对称图形但不是轴对称图形有:平行四边形; (3)既是轴对称图形又是中心对称图形的有:线段、矩形、菱形、正方形、圆、正n边形(n为偶数) 18、如果要求尺规作图,应清楚反映出尺规作图的痕迹,否则会被扣分(一般作垂直平分线和角平分线较多); 19、折叠问题:A要注意折叠前后线段、角的变化;B通常要设求知数; 20、注意特殊量的使用,如等腰三等形中的三线合一,正方形中的角,都是做题的关键; 21、统计初步和概率习题注意:
42、(1)平均数、中位数、众数、方差、极差、标准差、加权平均数的计算要准确; (2)认真思考样本、总体、个体、样本容量(不带任何单位,只是一个数) 在选择题中的正确判断、(注意研究的对象决定了样本的说法) (3)概率: 摸球模型题注意放回和不放回、若是二步事件,或放回事件,或关注和或积的题,一般用列表法;若是三步事件,或不放回事件,一般用树状图; 注意在求概率的问题中寻找替代物,常见的替代物有:球,扑克牌,骰子等; 22、综合题的注意事项 (1)综合题一般分为好几步,逐步递进,前几步往往比较容易,极客数学帮特别提醒一定要做,中考是按步骤给分的,能多做一些就多做一些,可以多得分数; (2)注意大前提
43、和各小题的小前提,不要弄混; (3)注意前后问题的联系,前面得出的结论后面往往要用到、 (4)从条件入手,可以多写一些结论,看哪个结论对作题有帮助,实在做不下去时,再审题,看看是否还有条件没有用到,需不需要做辅助线;从结论入手,逆向思维,正着答题; (5)往往利用相似(x形或A字形图),设求知数,构造方程,解方程而求解,必要时需做辅助线、函数图像上的点可借助函数解析式来设点,通常设横坐标,利用解析式来表示纵坐标。 中考数学常见解题技巧方法总结 篇11 一、实数代数式运算、方程不等式求解 (1)分式的化简与求值:分式的运算分式的个数不超过三个,所以中考试题多以三个或两个分式为主,考察分式的通分,
44、整式的因式分解,分式的约分等。通常的解题程序是:先把分子与分母能分解因式的进行因式分解,同时把小括号内的分式通分合并;再把除法转化为乘法运算,最后准确约分即可。 求值时改变了直接给出未知数的具体数字的模式,通常给出未知数的取值范围,首先要根据分式成立的意义确定什么数不能取,进而选择可行数代入求值。 (2)实数的运算 实数混合运算加减运算的次数不超过四次,因此中考试题中加减号的次数多以三个或四个为主,考察内容包括根式的化简,绝对值运算,整数指数幂的运算,特殊角三角函数值等。 通常的解题程序是:按加减把混合运算分成四个或五个小运算,第一步中把每个小运算的结果求出,再去括号进行实数的加减运算可直接得
45、结果。 (3)解方程、解不等式 解方程(组)与解不等式(组)主要以解一元二次不等式,解二元一次方程组和解一元一次不等式组为主,考察等式与不等式的基本性质和消元降次的思想、它们的解题程序课本中都有标准的过程。 注意:解一元二次方程时可选择“公式法”,容易掌握和理解;解二元一次方程组时可选择“加减法”,可以提高速度;解一元一次不等式组时要关注数轴的准确画法与应用、 二、全等三角形证明与特殊四边形的判断与证明以及相关基本计算 几何题证明的难度不得超过证明定理的难度、因此,几何题多以直观判断图形的形状,判断图形间的关系,证明三角形全等和证明特殊四边形为主。 解决这类问题的基本程序是:先利用工具验证并直观判断图形的形状或关系,再寻找并证明两个三角形全等进而得到所要证明的问题,计算时多利用三角形的有关性质即可。 三、统计图表完善,样本估计总体状况计算问题 近几年中