《2022年中考总复习三几何初步 .pdf》由会员分享,可在线阅读,更多相关《2022年中考总复习三几何初步 .pdf(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、优秀学习资料欢迎下载中考总复习三:几何初步一、目标与策略明确学习目标及主要的学习方法是提高学习效率的首要条件,要做到心中有数!学习目标:(一)图形的认识(1)点、线、面认识点、线、面(如交通图上用点表示城市,屏幕上的画面是由点组成的). 认识直线、射线、线段及性质. 会比较线段的大小,会计算线段的和、差、倍、分,并会进行简单计算. 了解线段的中点. (2)角通过丰富的实例,进一步认识角. 会比较角的大小,能估计一个角的大小,会计算角度的和与差,认识度、分、秒,会进行简单换算. 了解角平分线及其性质(3)相交线与平行线了解补角、余角、对顶角,知道等角的余角相等、等角的补角相等、对顶角相等. 了解
2、垂线、垂线段等概念,了解垂线段最短的性质,体会点到直线距离的意义. 知道过一点有且仅有一条直线垂直于已知直线,会用三角尺或量角器过一点画一条直线的垂线. 了解线段垂直平分线及其性质. 知道两直线平行同位角相等,进一步探索平行线的性质. 知道过直线外一点有且仅有一条直线平行于已知直线,会用三角尺和直尺过已知直线外一点画这条直线的平行线. 体会两条平行线之间距离的意义,会度量两条平行线之间的距离. (二)尺规作图完成以下基本作图:作一条线段等于已知线段,作一个角等于已知角,作角的平分线,作线段的垂直平分线. 了解尺规作图的步骤,对于尺规作图题,会写已知、求作和作法(不要求证明 ). (三)命题与证
3、明理解证明的定义和必要性. 通过具体的例子,了解定义、命题、定理的含义,会区分命题的条件(题设 )和结论 . 结合具体例子,了解逆命题的概念,会识别两个互逆命题,并知道原命题成立其逆命题不一定成立. 掌握用综合法证明的格式,体会证明的过程要步步有据. 复习策略:复习本专题应抓住线、角两条主线,采用理论联系实际的方法(例如线段可以看作绷紧的琴弦等),发展自己的数感、符号感、应用意识和推理能力等. 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 1 页,共 20 页优秀学习资料欢迎下载二、学习与应用知识点一:直线的概念和性质(一)直线的定义:代数中学习
4、的数轴和一张纸对折后的折痕等都是直线,直线可以向两方无限延伸.(直线的概念是一个描述性的定义,便于理解直线的意义) (二)直线的两种表示方法:“凡事预则立,不预则废”。科学地预习才能使我们上课听讲更有目的性和针对知识要点梳理认真阅读、理解教材,尝试把下列知识要点内容补充完整,若有其它补充可填在右栏空白处。详细内容请参看网校资源ID :#tbjx7#238465 知识框图通过知识框图,先对本单元知识要点有一个总体认识。精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 2 页,共 20 页优秀学习资料欢迎下载(1)用表示直线上的任意两点的大写字母来表示这
5、条直线,如直线 AB , 其中 A、B 是表示直线上两点的字母;(2)用一个小写字母表示直线,如直线a. (三)直线和点的两种位置关系(1)点在直线(或说直线经过某点);(2)点在直线(或说直线不经过某点). (四)直线的性质:过两点一条直线 (即两点一条直线 ). (五)同一平面内两条不同直线的位置关系:(1)两条直线无公共点,即;(2)两条直线有一个公共点,即两条直线,这个公共点叫做两条直线的(两条直线相交,只有一个交点). 知识点二:射线、线段的定义和性质(一) 射线的定义:直线上叫做射线 .射线只向无限延伸 . (二) 射线的表示方法:(1)用表示射线的端点和射线上任意一点的大写字母来
6、表示这条射线,如射线OA,其中 O 是端点, A 是射线上一点;(2)用一个小写字母表示射线,如射线a. (三) 线段的定义:直线上叫做线段,两个点叫做线段的. (四) 线段的表示方法:(1)用表示两个端点的大写字母表示,如线段AB ,A、B 是表示端点的字母;(2)用一个小写字母表示,如线段a. (五) 线段的性质:所有连接两点的线中,线段(即两点之间,线段). (六) 线段的中点 : 线段上一点把线段分成的两条线段,这个点叫做线段的中点. (七) 两点的距离:连接两点间的,叫做两点的距离. 知识点三:角(一) 角的概念:精选学习资料 - - - - - - - - - 名师归纳总结 - -
7、 - - - - -第 3 页,共 20 页优秀学习资料欢迎下载(1)定义一:有公共端点的两条组成的图形叫做角,这个公共端点叫做角的,两条射线分别叫做角的.(2)定义二:一条射线绕着从一个位置到另一个位置所成的图形叫做角 .射线旋转时经过的平面部分是角的内部,射线的端点是角的顶点,射线旋转的初始位置和终止位置分别是角的两条边.(二) 角的表示方法:(1)用三个大写字母来表示,注意将顶点字母写在中间,如AOB;(2)用一个大写字母来表示,注意顶点处只有一个角用此法,如A;(3)用一个数字或希腊字母来表示,如1,. (三) 角的分类:(1)按大小分类:角-小于直角的角 (0 90 ) 角-平角的一
8、半或90 的角 (=90 )角-大于直角而小于平角的角(90 180 ) (2) 平角:一条射线绕着端点旋转,当终止位置与起始位置成时,所成的角叫做平角,平角等于 .(3)周角:一条射线绕着端点旋转,当终止位置又回到起始位置时,所成的角叫做周角,周角等于 .(4)互为余角:如果两个角的和是一个,那么这两个角叫做互为余角. (5)互为补角:如果两个角的和是一个,那么这两个角叫做互为补角. (四) 角的度量:(1)度量单位:度、分、秒;(2)角度单位间的换算:1 = ,1= ;(3)1 平角 = ,1 周角 = ,1 直角= .(五) 角的性质:同角或等角的余角,同角或等角的补角.(六) 角的平分
9、线:如果一条射线把一个角分成两个的角,那么这条射线叫做这个角的平分线. 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 4 页,共 20 页优秀学习资料欢迎下载知识点四:相交线(一)对顶角(1)定义:如果两个角有一个, 而且一个角的两边分别是另一角两边的,那么这两个角叫对顶角. (2)性质:对顶角. (二)邻补角(1)定义:有一条,而且另一边的两个角叫做邻补角 . (2)性质:邻补角. (三)垂线(1)两条直线互相垂直的定义:当两条直线相交所得的四个角中,有一个角是时,就说这两条直线是互相垂直的,它们的交点叫做.垂直用符号 “ ” 来表示(2)垂线
10、的定义 :互相的两条直线中,其中的一条叫做另一条的垂线,如直线 a 垂直于直线b,垂足为 O,则记为 ab,垂足为 O.其中 a 是 b 的垂线, b 也是 a的垂线 . (3)垂线的性质:过一点一条直线与已知直线垂直. 连接直线外一点与直线上各点的所有线段中,最短 .简单说成:最短 .(4)点到直线的距离定义:直线外一点到这条直线的,叫做点到直线的距离. (四)同位角、内错角、同旁内角精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 5 页,共 20 页优秀学习资料欢迎下载(1)基本概念:两条直线(如 a、b)被第三条直线 (如 c)所截,构成八个
11、角,简称三线八角, 如右图所示: 1 和、2 和、3 和、4 和是同位角; 1 和、 2 和是内错角; 1 和、 2 和是同旁内角 . (2)特点:同位角、内错角、同旁内角都是由三条直线相交构成的两个角.两个角的一条边在同一直线(截线 )上,另一条边分别在两条直线(被截线 )上. 知识点五:平行线(一) 平行线定义:在同一平面内,的两条直线叫做平行线.平行用符号 “ ” 来表示, .如直线 a 与 b 平行,记作ab.在几何证明中, “ ” 的左、右两边也可能是射线或线段. (二) 平行公理及推论:(1)经过直线外一点,一条直线与这条直线平行. (2)平行公理推论:如果两条直线都与第三条直线,
12、那么这两条直线也互相.即:如果 b a,ca,那么 bc. (三) 性质:(1)平行线永远不相交;(2)两直线平行,同位角;(3)两直线平行,内错角;(4)两直线平行,同旁内角;(5)如果两条平行线中的一条垂直于某直线,那么另一条也垂直于这条直线,可用符号表示为:若bc,ba,则 ca. (四) 判定方法:(1)定义(2)平行公理的的推论(3)同位角,两直线平行;(4)内错角,两直线平行;(5)同旁内角,两直线平行;(6)于同一条直线的两条直线平行. 知识点六:命题、定理、证明精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 6 页,共 20 页优秀
13、学习资料欢迎下载(一) 命题:(1)定义:判断一件事情的语句叫命题. (2)命题的结构:题设+结论 =命题(3)命题的表达形式:如果 那么 ;若 则 ;(4)命题的分类:真命题和假命题(5)逆命题:原命题的题设是逆命题的结论,原命题的结论是逆命题的题设. (二) 公理、定理:(1)公理:人们在长期实践中总结出来的能作为判断其他命题真假依据的真命题叫做公理 . (2)定理:经过推理证实的真命题叫做定理. (三) 证明:用推理的方法证实命题正确性的过程叫做证明. 考点一:直线、射线、线段的概念和性质例 1下列语句正确的是( ) A延长直线AB B延长射线OA C延长线段AB 到 C,使 AC=BC
14、 D延长线段AB 到 C,使 AC=3AB 考点: 直线、射线、线段的性质.解析:举一反三【变式 1】下列语句正确的是( ) A如果 PA=PB,那么 P 是线段 AB 的中点B线段有一个端点C直线 AB 大于射线 AB D反向延长射线OP(O 为端点 ) 考点: 直线、射线、线段的性质.解析:例 2 (1)数轴上有两点A、B 分别表示实数a、b,则线段 AB 的长度是 ( ) Aa-b Ba+b Ca -b Da+b(2)已知线段AB ,在 BA 的延长线上取一点C,使 CA=3AB ,则线段 CA 与线经典例题自主学习认真分析、解答下列例题,尝试总结提升各类型题目的规律和技巧,然后完成举一
15、反三。若有其它补充可填在右栏空白处。更多精彩请参看网校资源ID:#jdlt0#238465 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 7 页,共 20 页优秀学习资料欢迎下载段 CB 之比为 ( ) A3:4 B2:3 C3:5 D1:2 考点: 数轴上两点间的距离和线段的加减.思路点拨: 本类题目注意线段长度是非负数,若有字母注意使用绝对值.根据题意,画图. 解:总结升华:. 举一反三【变式 1】如图,点A、B、C 在直线l上,则图中共有 _条线段 . 答案:【变式 2】有一段火车路线,含这段铁路的首尾两站在内共有5 个车站 (如图 ),图
16、中共有几条线段?在这段线路上往返行车,需印制几种车票(每种车票要印出上车站与下车站 )?ABCDE解:总结升华:. 【变式 3】已知线段AB=8cm ,延长 AB 至 C,使 AC=2AB ,D 是 AB 中点,则线段CD= .思路点拨: 解决本例类型的题目应结合图形,即数形结合,本题考查延长线段的方向和线段的中点的概念. ABCD解:精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 8 页,共 20 页优秀学习资料欢迎下载考点二:角例 3下列说法正确的是( ) A角的两边可以度量. B角是由有公共端点的两条射线构成的图形. C平角的两边可以看成直线
17、. D一条直线可以看成是一个平角. 考点: 角的定义解析:例 4已知 OC 平分 AOB,则下列各式 :(1)AOC=12AOB ;(2)AOC=COB;(3)AOB=2 AOC,其中正确的是( ) A只有 (1) B只有 (1)(2) C只有 (2)(3) D(1)(2)(3) 思路点拨: 角平分线定义的的三种表达形式.答案:例 5已知与互余,且=40 ,则的补角为 _度. 考点: 角互余和互补定义. 思路点拨: 本题考查互余、互补两角的定义,互余、互补只与两角度数和有关,与角的位置无关 .解:举一反三【变式 1】如图,已知 COE=BOD= AOC=90 ,则图中互余的角有_对,互补的角有
18、 _对. 考点: 互为余角和互为补角的定义.思路点拨: 在本题目中,当图中角比较多时,就将图形的角进行归类,找出每种相等的角,按照同角或等角的余角相等,同角或等角的补角相等的性质解决问题,注意要不重不漏 . 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 9 页,共 20 页优秀学习资料欢迎下载解:【变式 2】已知:如图,ACBC,垂足为 C,BCD 是 B 的余角 .求证:ACD= B. 证明: AC BC(已知 ) ACB=90 ( ) BCD 是 DCA 的余角 ( ) BCD 是 B 的余角 (已知) ACD= B( ) 思路点拨 :会根据
19、所给的语句写出正确的根据.会用所学的定理、 公理、 推论等真命题概括几何语言 . 答案:例 6(1)已知 1=4327,则 1 的余角是 _,补角是 _;(2)18.32 =18 ( )() ,21642=_ .考点: 掌握角的单位之间的换算关系. 1 =60,1=60.解:举一反三【变式 1】计算 . 513255363526233370268370考点: 会计算角之间的和、差、倍、分,注意相邻单位之间是60 进制的,相同单位互相加减 . 解:B D A C 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 10 页,共 20 页优秀学习资料欢迎下
20、载例 7时钟在 1 点 30 分时,时针与分针的夹角为_度. 解析:举一反三【变式 1】某火车站的时钟楼上装有一个电子报时钟,在钟面的边界上, 每一分钟的刻度处都装有一只小彩灯,晚上9 时 35 分 20 秒时,时针与分针所夹的角内装有多少只小彩灯?解析:例 8表示 O 点南偏东 15 方向和北偏东25 方向的两条射线组成的角等于_度. 考点: 方位角 . 解析:举一反三【变式 1】如图,在甲、乙两地之间修一条笔直的公路,从甲地测得公路的走向是北偏东 48 ,甲、乙两地间同时开工,若干天后,公路准确接通,则乙地所修公路的走向是南偏西 _度. 考点: 方位角在实际中的应用答案:精选学习资料 -
21、- - - - - - - - 名师归纳总结 - - - - - - -第 11 页,共 20 页优秀学习资料欢迎下载例 9如图, OAOB, BOC=40 ,OD 平分 AOC,则 BOD=_ . 思路点拨: 通过观察图形,找出各角之间的联系,关键是看清角所在的位置,结合图形进行计算 . 解:举一反三【变式 1】用一副三角板画角,不能画出的角的度数是( )A15B75C145D165思路点拨: 了解一副三角板中各角的度数,总结规律:用一副三角板画角,能画出的角都是 15 的整数倍 . 答案:【变式2】以 AOB的顶点O 为端点作射线OC,使 AOC:BOC=5:4.(1)若AOB=18 ,求
22、 AOC 与 BOC 的度数; (2)若 AOB=m ,求 AOC 与 BOC的度数 . 思路点拨: 当题目中包含多种可能的情况时,应根据可能出现的所有情况进行分类,要做到无遗漏、无重复. 答案:考点三:尺规作图例 10只用无刻度直尺就能作出的是( ) A延长线段 AB 至 C,使 BC=AB ;B过直线l上一点 A 作l的垂线C作已知角的平分线;D从点 O 再经过点 P 作射线 OP 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 12 页,共 20 页优秀学习资料欢迎下载解析:例 11. 已知线段 MN ,画一条线段AC=MN 的步骤是 : 第
23、一步,第二步,AC 就是所要画的线段. 考点: 这是尺规作图作一条线段等于已知线段的步骤,必须掌握. 答案 :举一反三:【变式 1】如图所示,请把线段AB 四等分,简述步骤. 考点 :作线段 AB 的垂直平分线的方法.作法:例 12如图所示, 在图中作出点C,使得 C 是 MON 平分线上的点, 且 AC=OA , 并简述步骤 . NMAO思路点拨: 用尺规作图作已知角的平分线,再用圆规截取AC=OA. 作法 :精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 13 页,共 20 页优秀学习资料欢迎下载总结升华:. 举一反三:【变式 1】如图所示,已
24、知AOB 和两点 M、N,画一点 P,使得点 P 到 AOB 的两边距离相等,且PM=PN ,简述步骤 . NMBAO考点 :角平分线定理和垂直平分线定理. 作法 : 考点四:相交线、平行线例 13如图, AD BC,AC 与 BD 相交于 O,则图中相等的角有_对. 思路点拨: 两直线平行,内错角相等;两直线相交,所得的对顶角相等. 解析 :例 14如图所示,下列条件中,不能判断12/ll的是 ( ) A1=3 B2=3 C4=5 D2+4=180考点: 平行线的判定 .解析:举一反三:【变式 1】( 1)如图,若ABCD,则 A、 E、 D 之间的关系是 ( ). 精选学习资料 - - -
25、 - - - - - - 名师归纳总结 - - - - - - -第 14 页,共 20 页优秀学习资料欢迎下载AA+E+D=180BA-E+D=180CA+E-D=180DA+E+D=270(2)如图所示,1l2l, 1=120 , 2=100 ,则 3=( ). A20B40C50D60考点: 平行线的性质思路点拨: 通过观察图形,可作出一条辅助线,从而把问题化难为易. ABCDEF(1) (2) 解析:例 15两平行直线被第三条直线所截,同位角的平分线( ) A互相重合B互相平行C互相垂直D相交考点: 平行线的性质和判定.解析:举一反三:【变式 1】如图, CD 平分 ACB,DEBC,
26、 AED=80 ,求 EDC 的度数 . 思路点拨 :由平行线的性质和角平分线定义求出结果.精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 15 页,共 20 页优秀学习资料欢迎下载解:【变式 2】如图,已知AB CD , DAB= DCB,AE 平分 DAB ,且交 BC 于 E,CF 平分 DCB,且交 AD 于 F.求证 : AEFC. 思路点拨 :这类问题可由题设出发找结论,也可由结论出发找题设. 证明:【变式 3】已知:如图,CBAB , CE 平分 BCD,DE 平分 CDA ,并且 1+2=90 ,求证: DA AB. 思路点拨 :这
27、考查学生整体考虑问题的能力,可以从已知推出结论,也可以从结论入手,找出和已知相对应的条件. 证明:精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 16 页,共 20 页优秀学习资料欢迎下载【变式 4】求证:两条平行直线被第三条直线所截,内错角的平分线互相平行. 思路点拨 :考查学生解决这种证明题要先根据题意画出图形,再改写成已知、求证的几何语言形式的命题. 考点五:命题、定理例 16判断下列语句是不是命题(1)延长线段 AB( ) (2)两条直线相交,只有一交点( ) (3)画线段 AB 的中点 ( ) (4)若 |x|=2,则 x=2( ) (5
28、)角平分线是一条射线( ) 思路点拨 :本题考查学生理解命题的概念,判断语句是否是命题有两个关键,首先观察是不是一个完整的句子,再观察是否作出判断. 解析:举一反三:【变式 1】下列语句不是命题的是( ) A两点之间,线段最短B不平行的两条直线有一个交点Cx 与 y 的和等于 0 吗?D对顶角不相等 . 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 17 页,共 20 页优秀学习资料欢迎下载解析 :理解命题概念, C 答案虽然是句子,但没有作出判断,D 答案是假命题但也是命题.故选 C. 例 17下列命题中真命题是( ) A两个锐角之和为钝角B两
29、个锐角之和为锐角C钝角大于它的补角D锐角小于它的余角思路点拨 :命题分为真命题、假命题.正确的命题是真命题,错误的命题是假命题. 解析:举一反三:【变式 1】命题:对顶角相等;垂直于同一条直线的两直线平行;相等的角是对顶角;同位角相等.其中假命题有 ( ) A.1 个B.2 个C.3 个D.4 个解析:例 18分别写出下列各命题的题设和结论. (1)如果 ab,bc,那么 ac;(2)同旁内角互补,两直线平行. 思路点拨 :命题分为题设和结论两部分,可以写成 “ 如果,那么”的形式 . 答案:举一反三:【变式 1】分别把下列命题写成“ 如果,那么” 的形式 . (1)两点确定一条直线;(2)等
30、角的补角相等;(3)内错角相等 . 答案:三、总结与测评精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 18 页,共 20 页优秀学习资料欢迎下载要想学习成绩好,总结测评少不了!课后复习是学习不可或缺的环节,它可以帮助我们巩固学习效果,弥补知识缺漏,提高学习能力。(一)数形结合思想利用线段的长度、角的角度、对顶角、三线八角等基本几何图形,会求线段的长,以及角的度数,利用图形的直观性解决数的抽象性,能在一定条件下形数互化,由数构形,以形破数. (二)分类讨论思想直线的交点个数及位置关系,角的大小等需要有分类讨论的思想,包含多种可能的情况时,应根据可能
31、出现的所有情况来分别讨论得出各种情况下相应的结论,不重不漏. (三)化归与转化思想在解决利用几何图形求线段长度和角的度数的问题时,常常是将需要解决的问题,通过做辅助线、求和差等转化手段,归结为另一个相对较容易解决的或者已经有解决模式的问题,化繁为简、化难为易,由复杂与简单的转化. (四)注意观察、分析、总结结合近几年中考试卷,几何基本图形中的角的计算、与线段和平行有关的实际问题是当前命题的热点,常以填空和选择形式出现,以考查基础为主;尺规作图通常结合计算和证明出现,要注意弄清概念,认真观察,总结规律,并做到灵活应用. 知识点: 线段、角;相交、平行测评系统 分数:模拟考试系统 分数:如果你的分
32、数在80 分以下,请进入网校资源ID:#cgcp0#238465 做基础达标部分的练习,如果你的分数在80 分以上,你可以进行能力提升题目的测试。也可以尝试做一下近几年各地个中考试题:#zktc0# 238465。我的收获成果测评现在来检测一下学习的成果吧!请到网校测评系统 和模拟考试系统 进行相关知识点的测试。自我反馈学完本节知识,你有哪些新收获?总结本节的有关习题,将其中的好题及错题分类整理。如有问题,请到北京四中网校的“名师答疑”或“互帮互学”交流。总结规律和方法强化所学认真回顾总结本部分内容的规律和方法,熟练掌握技能技巧。相关内容请参看网校资源ID:#tbjx43#238465 。精选
33、学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 19 页,共 20 页优秀学习资料欢迎下载习题整理题目或题目出处所属类型或知识点分析及注意问题好题错题注: 本表格为建议样式,请同学们单独建立错题本,或者使用四中网校错题本进行记录。网校重要资源知识导学:中考总复习三:几何初步(ID:#238465 )视听课堂:直线形1(ID:#138293 ) 、直线形 2(ID:#138294 )若想知道北京四中的同学们在学什么,请去“ 四中同步 ” 看看吧!和四中的学生同步学习,同步提高!更多资源,请使用网校的学习引领或搜索功能来查看使用。对本知识的学案导学的使用率: 好(基本按照学案导学的资源、例题进行复习、预习和进行课堂笔记等,使用率达到80%以上) 中(使用本学案导学提供的资源、例题和笔记,使用率在50%-80%左右) 弱(仅作一般参考,使用率在50%以下)学生: _ 家长: _ 指导教师: _ 请联系北京四中网校当地分校以获得更多知识点学案导学。精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 20 页,共 20 页