《福建省宁德市蕉城区2020-2021学年八年级上学期期中考试数学试题(含答案).docx》由会员分享,可在线阅读,更多相关《福建省宁德市蕉城区2020-2021学年八年级上学期期中考试数学试题(含答案).docx(15页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、 福建省宁德市蕉城区 2020-2021 学年八年级上学期期中考试数学试题(答卷时间:120 分钟; 满分:100 分)一选择题:(本题有 10 小题,每小题 3 分,共 30 分.每小题只有一个正确的选项,请用2B 铅笔在答题卡的相应位置填涂)22p-3 3 2、1.在实数0 、 、中 ,无理数的个数有( )C 3 个 D 4 个2.要使二次根式 x - 有意义,x 必须满足( )A. x2 B. x2 C. x23.下列无理数中,与 4 最接近的是( )7A 1 个B 2 个2D. x211131719A.B.C.D.4.下列数据能确定物体具体位置的是( )A.明华小区 4 号楼 B.希望
2、路右边C.北偏东 30oD.东经 118 ,北纬 28o o5. 在ABC 中,A,B,C 的对边分别是 a,b,c,下列条件不能判断ABC 是直角三角形的是( )A. A:B:C=3:4:5C. a:b:c=3:4:5B. A+B=CD. a+b =c2226.已知:如图,以 RtABC 的三边为斜边分别向外作等腰直角三角形若斜边 AB=3,则图中阴影部分的面积为()9492AB3C.D 97.若点 P 在一次函数 y=x-4 的图像上,则点 P 一定不在()第6 题图 A.第一象限B.第二象限C.第三象限D.第四象限8.如果图形的纵坐标不变,横坐标变为原来的相反数,此时图形的位置却没有发生
3、任何变化,则该图形不可能是(A.等腰三角形)B.正方形C.直角梯形D.等腰梯形八年级数学试题 第 1 页 共 6 页9.如图,梯子AB靠在墙上,梯子的底端A到墙根O的距离为 2 m,梯子的顶端B到地面的距离为 7 m,现将梯子的底端A向外移动到A,使梯子的底端A到墙根O的距离等于 3m,同时梯子的顶端B下降至B,那么BB()A大于 1 mC. 小于1 mB等于 1 mD小于或等于 1 m10.下列图形中,不是表示一次函数y =- n 与正比例函数 y = mnx (m 、n 为常数,mx且mn 0)的图象的是()二填空题:(本题有 6 小题,每题 2 分,共 12 分)111. 的立方根是81
4、2.在平面直角坐标系中,已知一次函数y=2x+1 的图象经过P (x ,y )、P (x ,y )两111222点,若x x ,则yy (填“”“”或“=”)1212( 3 + 2) ( 3 - 2)=202113.计算:.202014.如图,数轴上点 A、B 对应的数分别是 1,2,过点 B 作 PQAB,以点 B 为圆心,AB 长为半径作圆弧,交 PQ 于点 C,以原点 A 为圆心,AC 长为半径画弧,交数轴于点 M,当点 M 在点 B 的右侧时,点 M 对应的数是= -2x + 3中,当自变量 x 满足15.在函数 y时,图象在第一象限.八年级数学试题 第 2 页 共 6 页16.我国汉
5、代数学家赵爽为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦图”,它是用八个全等的直角三角形拼接而成,记图中正方形 ABCD,正方形 EFGH,正方形 MNKTS+ S + S的面积分别为S , S , S 若正方形 EFGH 的边长为7,则=123123三解答题:(本题有 7 大题,共 52 分)17.(本题 8 分)计算27 - 12- 2 + 8 -( 5 -1)0(1)(2)318.(本题 6 分)格点三角形(顶点是网格线的交点的三角形)ABC 在平面直角坐标系的位置如图所示. (1)写出 A,B,C 三点的坐标;(2)若ABC 各顶点的横坐标不变,纵坐标都乘以-1,请你在同一
6、坐标系中描出对应的点 A , B ,C ,并依次连接这三个点,所得的A B C 与原ABC 有怎样的位置关系.,1111 1 1八年级数学试题 第 3 页 共 6 页19.(本题 6 分)我国是一个严重缺水的国家为了加强公民的节水意识,某市制定了如下用水收费标准:每户每月的用水不超过6 吨时,水价为每吨4 元,超过6 吨时,超过的部分yx按每吨 5 元收费该市某户居民 5 月份用水 吨,应交水费 元yx(1)请写出 与 的函数关系式(2)如果该户居民这个月交水费 34 元,那么这个月该户用了多少吨水? 20.(本题 6 分)如图,有一个直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直
7、角边AC沿直线 AD 折叠,使它落在斜边 AB 上,且与 AE 重合,求 CD 的长. 八年级数学试题 第 4 页 共 6 页21.(本题 6 分)先化简,再求值:a+如图 3 是小亮和小芳的解答过程1- 2a + a,其中a=20202=a+1-a=1=a+a-1=2a-1=4039(1)_的解法是错误的;错误的原因在于未能正确地运用二次根式的性质:_ _;(2)先化简,再求值:a+2 -6a +9 ,其中 a=-2a2 3422.(本题 8 分)已知如图,一次函数 = -yx+ 3 的图像交坐标轴于 A,B 两点.(1)求 A,B 两点的坐标;(2)将线段 AB 绕着点 A 逆时针旋转 9
8、0 度得到线段 AC,点 C 落在第一象限,求点 C 的坐标; 23.(本题 9 分)满足 a +b =c 的三个正整数,称为勾股数。222(1)请把下列三组勾股数补充完整:,8, 10 5, 13 8, 15,。(2)小敏发现,很多已经约去公因数的勾股数组中,都有一个数是偶数,如果将它写成 2mn,那么另外两个数可以写成 m +n ,m-n,如 4=221,5=2 +1 ,3=2 -1 .请你帮小敏证明这22222222三个数 2mn,m +n ,m -n 是勾股数组.2222(3)如果 21,72,75 是满足上述小敏发现的规律的勾股数组,求 m+n 的值.24.(本题 9 分)对于平面直
9、角坐标系中的任意两点 P (x ,y ),P (x ,y ),我们把211122x - x + y -y叫做P ,P 两点间的直角距离,记作 d(P ,P ).11212122(1)已知 A(1,1),B(5,4),求 d(A,B).(2)已知点 O 为坐标原点,动点 P(x,y)满足d(O,P)=2,请写出 y 与 x 之间的关系式,并在所给的直角坐标系中画出所有符合条件的点 P 所组成的图形.(3)设点 P (x ,y )是一定点,点 Q(x,y)是直线 y=ax+b 上的动点,我们把 d(P ,Q)的最oooo小值叫做点 P 到直线 y=ax+b 的直角距离。试求点 M(1,-3)到直线
10、 y=x+2 的直角距离.o 八年级数学试题 第 6 页 共 6 页20202021 学年第一学期八年级期中检测数学试题参考答案和评分标准一、填空题:(本题有 10 小题,每题 3 分,共 30 分)1.B2.D3.C4.D5.A6.C7.B8.C9.C10.A二、选择题:(本题有 6 小题,每题 2 分,共 12 分)133 - 22 +10 x15. 211.212.13.14.16. 21三、解答题:(本题共 52 分)27 - 12- 2 + 8 -( 5 -1)017.(1)(2)32 +2 2 -1解:原式=解:原式= 9 4=3 2 -1.4 分=3-2=1.8 分(其它解法参考
11、得分) 18.解(1)A(3,4) B(1,2) C(5,1).3 分(2)如图A B C 为所求作的所得的A B C 与原ABC 有关于x 轴对称.6 分1 1 11 1 119. 解:(1) 当0x6 时,y=4x;当 6 时,y=46+5(x-6)=5x-6 .3 分x(2) 4 6=2434,当 y=34 时 5x-6=34 x=8 答:该户用了8 吨水. .6 分ACB=90 ,AC=6cm,BC=8cm20.解:0AB =BC +AC =100222AB=10.2 分依题意得 AE=AC=6cm,CD=DE,AED=ACB=900BE=AB-BE=4cm, BD=BC-DE=8-D
12、E,DEB=900.4 分 DE +BE =BD222CD +4 =(8-CD)222解得 CD=3cm.6 分(其它解法参考得分)21.解:(1)小亮 .1 分a = a2.3 分( )(2)原式=a + 2 a -32 = + 2 -3aa( )+ 2 3- a = a + 6 - 2a = 6 - a = 8a=-23,原式=a.6 分22.解:(1)令 y=0,则 x=4,A(4,0).令 x=0,则 y=3,B(0,3).4 分(2)过点 C 作 CHx 轴,垂足为 H,AHC=900又AOB=900ACH+CAH=BAO+CAH=900ACH=BAO在ABO 和CAH 中ACH=B
13、AO AHC=AOB AB=ACABOCAH(AAS)CH=OA=4 AH=OB=3OH=OA+AH=7 C(7,4).8 分 (其它解法参考得分)23.解(1)612 17.3 分(2)证明: (m -n ) +(2mn) =m +n -2m n +4m n =m +n +2m n2 2222244222244(m+n ) =m+n+2m n2 222244 (m -n ) +(2mn) =(m +n )2 222222 m -n ,m +n ,2mn是勾股数.6 分2222(3)化简得:7,24,25 偶数 24=234,25=4 +3 ,7=4 -32222 m=4,n=3, m+n=7
14、.9 分 (其它解法参考得分)24.解(1) A(1,1),B(5,4),x - x + y -y 1- 5 + 1- 4=7.3 分 d(A,B)=ABAB(2)由题意得 d(O,P)=0- x + 0- y=2x + y 关系式为=2所有符合条件的点 P 组成的图形如图所示。.6 分 (3) Q 点在直线 y=x+2 Q(x,x+2)( )x - x + y - yx -1 + x + 2 - -3 x -1 + x + 5=d(Q,M)=QMQM又x 可取一切实数,x -1 + x + 5 表示数轴上实数 x 所对应的点到数 1 和-5 所对应的点的距离之和,其最小值为 6,M(1,-3
15、)到直线 y=x+2 的直角距离为 6.9 分(其它解法参考得分)(其它解法参考得分)23.解(1)612 17.3 分(2)证明: (m -n ) +(2mn) =m +n -2m n +4m n =m +n +2m n2 2222244222244(m+n ) =m+n+2m n2 222244 (m -n ) +(2mn) =(m +n )2 222222 m -n ,m +n ,2mn是勾股数.6 分2222(3)化简得:7,24,25 偶数 24=234,25=4 +3 ,7=4 -32222 m=4,n=3, m+n=7.9 分 (其它解法参考得分)24.解(1) A(1,1),B
16、(5,4),x - x + y -y 1- 5 + 1- 4=7.3 分 d(A,B)=ABAB(2)由题意得 d(O,P)=0- x + 0- y=2x + y 关系式为=2所有符合条件的点 P 组成的图形如图所示。.6 分 (3) Q 点在直线 y=x+2 Q(x,x+2)( )x - x + y - yx -1 + x + 2 - -3 x -1 + x + 5=d(Q,M)=QMQM又x 可取一切实数,x -1 + x + 5 表示数轴上实数 x 所对应的点到数 1 和-5 所对应的点的距离之和,其最小值为 6,M(1,-3)到直线 y=x+2 的直角距离为 6.9 分(其它解法参考得分)