难点解析北师大版九年级数学下册第一章直角三角形的边角关系专题测评试题(含答案解析).docx

上传人:可****阿 文档编号:32658175 上传时间:2022-08-09 格式:DOCX 页数:28 大小:582.40KB
返回 下载 相关 举报
难点解析北师大版九年级数学下册第一章直角三角形的边角关系专题测评试题(含答案解析).docx_第1页
第1页 / 共28页
难点解析北师大版九年级数学下册第一章直角三角形的边角关系专题测评试题(含答案解析).docx_第2页
第2页 / 共28页
点击查看更多>>
资源描述

《难点解析北师大版九年级数学下册第一章直角三角形的边角关系专题测评试题(含答案解析).docx》由会员分享,可在线阅读,更多相关《难点解析北师大版九年级数学下册第一章直角三角形的边角关系专题测评试题(含答案解析).docx(28页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、九年级数学下册第一章直角三角形的边角关系专题测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,AC是电杆AB的一根拉线,测得米,则拉线AC的长为( )A米B6sin52米C米D米2、如图,在正方形

2、中、是的中点,是上的一点,则下列结论:(1);(2);(3);(4)其中结论正确的个数有( )A1个B2个C3个D4个3、如图,在ABC中,C90,BC1,AB,则下列三角函数值正确的是()AsinABtanA2CcosB2DsinB4、在RtABC中,C=90,那么等于( )ABCD5、如图,A、B、C三点在正方形网格线的交点处,若将ABC绕着点A逆时针旋转得到,则的值为( )ABCD6、如图所示,九(二)班的同学准备在坡角为的河堤上栽树,要求相邻两棵树之间的水平距离为8 m,那么这两棵树在坡面上的距离AB为( )A8mB mC8sina mD m7、在ABC中,ACB90,AC1,BC2,

3、则sinB的值为()ABCD8、若tanA=2,则A的度数估计在( )A在0和30之间B在30 和45之间C在45和60之间D在60和90之间9、如果直线 与 轴正半轴的夹角为锐角 , 那么下列各式正确的是( )ABCD10、如图,在RtABC中,ABC90,BD是AC边上的高,则下列选项中不能表示tanA的是()ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知,都是锐角,且满足,则_2、如图, 在 中, 是斜边 上的中线, 点 是直线 左侧一点, 联结 , 若 , 则 的值为_3、如图,的顶点都在方格纸的格点上,则_4、在中,则的度数是_5、如图,在中,点

4、D是BC中点,点E、F分别在AB、AC上,连接DE、DF、EF,则EF的长为_三、解答题(5小题,每小题10分,共计50分)1、如图,某风景区内有一瀑布,AB表示瀑布的垂直高度,在与瀑布底端同一水平位置的点D处测得瀑布顶端A的仰角为45,斜坡CD的坡度i34,CD100米,在观景台C处测得瀑布顶端A的仰角为37,若点B、D、E在同一水平线上,求瀑布的落差AB(参考数据:sin370.6,cos370.8,tan370.75)2、解方程(1)2x2+3x3(2)计算:4sin30+2cos45tan6023、计算:4、(1)计算:(2)如图,在菱形ABCD中,于点E,求菱形的边长5、如图,在平面

5、直角坐标系中,点A在x轴的正半轴上,点B在x轴的负半轴上,点C在y轴的正半轴上,直线BC的解析式为ykx12(k0),ACBC,线段OA的长是方程x215x160的根请解答下列问题:(1)求点A、点B的坐标(2)若直线l经过点A与线段BC交于点D,且tanCAD,双曲线y(m0)的一个分支经过点D,求m的值(3)在第一象限内,直线CB下方是否存在点P,使以C、A、P为顶点的三角形与ABC相似若存在,请直接写出所有满足条件的点P的坐标;若不存在,请说明理由-参考答案-一、单选题1、D【分析】根据余弦定义:即可解答【详解】解:,米,米;故选D【点睛】此题考查了解直角三角形的应用,将其转化为解直角三

6、角形的问题是本题的关键,用到的知识点是余弦的定义2、B【分析】首先根据正方形的性质与同角的余角相等证得:BAECEF,则可证得正确,错误,利用有两边对应成比例且夹角相等三角形相似即可证得ABEAEF,即可求得答案【详解】解:四边形ABCD是正方形,BC90,ABBCCD,AEEF,AEFB90,BAEAEB90,AEBFEC90,BAECEF,BAECEF,BECE,BE2ABCFAB2CE,CFCECD,CD=4CF,故正确,错误,tanBAEBE:AB,BAE30,故错误;设CFa,则BECE2a,ABCDAD4a,DF3a,AE2a,EFa,AF5a,ABEAEF90,ABEAEF,故正

7、确故选:B【点睛】此题考查了相似三角形的判定与性质,直角三角形的性质以及正方形的性质熟练掌握相似三角形的判定与性质是解题的关键3、D【分析】根据正弦、余弦及正切的定义直接进行排除选项【详解】解:在ABC中,C90,BC1,AB,;故选D【点睛】本题主要考查三角函数,熟练掌握三角函数的求法是解题的关键4、A【分析】根据锐角A的邻边a与对边b的比叫做A的余切,记作cotA【详解】解:C=90,=,故选:A【点睛】此题主要考查了锐角三角函数的定义,关键是掌握余切定义5、B【分析】利用勾股定理逆定理得出CDB是直角三角形,以及锐角三角函数关系进而得出结论【详解】解:如图,连接BD,由网格利用勾股定理得

8、:是直角三角形,故选:B【点睛】本题考查旋转的性质、等腰三角形的性质、余弦等知识,是重要考点,掌握相关知识是解题关键6、B【分析】运用余弦函数求两树在坡面上的距离AB【详解】解:坡角为,相邻两树之间的水平距离为8米,两树在坡面上的距离(米)故选:B【点睛】此题主要考查解直角三角形中的坡度坡角问题及学生对坡度坡角的掌握及三角函数的运用能力7、A【分析】先根据勾股定理求出斜边AB的值,再利用正弦函数的定义计算即可【详解】解:在ABC中,ACB=90,AC=1,BC=2,AB=,sinB=,故选:A【点睛】本题考查了锐角三角函数的定义,勾股定理解决此类题时,要注意前提条件是在直角三角形中,此外还有熟

9、记三角函数的定义8、D【分析】由题意直接结合特殊锐角三角函数值进行分析即可得出答案.【详解】解:,.故选:D.【点睛】本题考查特殊锐角三角函数值的应用,熟练掌握是解题的关键.9、D【分析】在直线y=2x上任取一点P (a,2a),过点P作x轴的垂线,垂足为点B,则可求得的正余弦、正余切值,从而可得答案【详解】如图,在直线y=2x上任取一点P (a,2a),过点P作x轴的垂线,垂足为点B则OB=|a|,PB=2|a|由勾股定理得:在直角POB中,故选项D正确故选:D【点睛】本题考查了正比例函数的图象与性质,锐角三角函数,关键是画出图形,并在直线任取一点,作x轴的垂线得到直角三角形10、D【分析】

10、根据题意可推出ABC、ADB、BDC均为直角三角形,再在三个直角三角形中分别表示出tanA即可【详解】解:在RtABC中,ABC=90,BD是AC边上的高,ABC、ADB、BDC均为直角三角形,又A+C=90,C+DBC=90,A=DBC,在RtABC中,tanA=,故A选项不符合题意;在RtABD中,tanA=,故B选项不符合题意;在RtBDC中,tanA=tanDBC=,故D选项不符合题意;选项D表示的是sinC,故D选项符合题意;故选D【点睛】本题考查解直角三角形相关知识,熟练掌握锐角三角函数在直角三角形中的应用是解题关键二、填空题1、15【分析】根据非负数的性质得出,由特殊角的三角函数

11、值求得,计算即可求解【详解】解:,453015,故答案为:15【点睛】本题考查了非负数的性质和特殊角的三角函数值,熟记特殊角的三角函数值是解题的关键2、【分析】先证明,则,进而证明,据求得相似比,根据面积比等于相似比的平方即可求解【详解】解:是斜边 上的中线, 即又又又设,则故答案为:【点睛】本题考查了解直角三角形,三角形全等的性质与判定,相似三角形的性质与判定,直角三角形斜边上的中线等于斜边的一半,垂直平分线的性质与判定,正切的定义,证明是解题的关键3、【分析】延长 至格点,连接,再利用勾股定理逆定理,可得是直角三角形,即可求解【详解】解:如图,延长 至格点,连接,由勾股定理得,是直角三角形

12、,故答案为:【点睛】本题主要考查了锐角三角函数,勾股定理逆定理,做出适当的辅助线得到是直角三角形是解题的关键4、45度【分析】由条件根据A的正切值求得A的度数,再根据三角形的内角和定理求C即可【详解】解:在ABC中,tanA =,A=60,C=180-A-B=180-60-75=45故答案为:45【点睛】本题主要考查特殊角的正切值以及三角形的内角和定理,熟记特殊角的三角函数值是解题的关键5、【分析】延长ED到G使DG=ED,连结GC,GF,过G作GHAC与H,根据点D为BC中点,得出BD=CD,先证BDECDG(SAS),可得BE=CG=3,B=GCD,得出GCH=DCG+ACB=B+ACB=

13、60,根据30直角三角形先证可得HC=,利用锐角三角函数可求GH=cos30GC=,在RtGHF中,FG=,再证,即,根据三角函数可求即可【详解】解:延长ED到G使DG=ED,连结GC,GF,过G作GHAC与H,点D为BC中点,BD=CD,在BDE和CDG中,BDECDG(SAS),BE=CG=3,B=GCD,B+ACB=180-BAC=180-120=60,GCH=DCG+ACB=B+ACB=60,在RtGCH中,HGC=90-HCG=30,HC=,GH=cos30GC=,CF=5,HF=CF-CH=5,在RtGHF中,FG=,即,在RtEFG中,故答案为【点睛】本题考查三角形全等判定与性质

14、,三角形内角和,30直角三角形性质,锐角三角函数,勾股定理,直角三角形判定与性质,本题难度较大,综合性强,利用辅助线构造准确图形是解题关键三、解答题1、480米【分析】首先根据斜坡CD的坡度i34,CD100米,求出CE60,DE80,然后得出三角形ABD是等腰直角三角形,进而得到ABBD,然后根据仰角的三角函数值列出方程求解即可【详解】解:,设CE3x,则DE4x在直角CDE中,CD100(3x)2(4x)21002解得:x20CE60,DE80在直角ADB中,ADB45,三角形ABD是等腰直角三角形,ABBD作CFAB于F,则四边形CEBF是矩形CEBF60,CFBEAB80AFAB60,

15、解得AB480答:瀑布的落差约为480米【点睛】此题考查了三角函数的应用,解题的关键是正确分析题目中的等量关系列方程求解2、(1);(2)【分析】(1)利用公式法求解即可得;(2)将特殊锐角的三角函数值代入,再计算乘法,最后计算加减法即可得【详解】解:(1)化成一般形式为,此方程中的,则,即,故方程的解为;(2)原式,【点睛】本题考查了解一元二次方程、特殊角的三角函数值的混合运算,熟练掌握方程的解法和特殊角的三角函数值是解题关键3、3【分析】先根据零指数幂、负整数指数幂、绝对值的性质,特殊角锐角三角函数值化简,再合并,即可求解【详解】解: 【点睛】本题主要考查了零指数幂、负整数指数幂、绝对值的

16、性质,特殊角锐角三角函数值等知识,熟练掌握零指数幂、负整数指数幂、绝对值的性质,特殊角锐角三角函数值是解题的关键4、(1)1;(2)13【分析】(1)根据特殊角的三角函数值、负整数指数幂及实数的绝对值的含义即可完成;(2)根据菱形的性质可得AB=AD,再由已知条件设,则由勾股定理可得AE,则由BE=8建立方程即可求得k,从而求得菱形的边长【详解】解:(1)原式.(2)四边形ABCD是菱形,.,设,则,即菱形的边长为13.【点睛】本题考查了特殊角的三角函数值、负整数指数幂及实数的绝对值,菱形的性质、三角函数及勾股定理,灵活运用这些知识是关键5、(1)A(16,0),B(-9,0);(2)-24;

17、(3)存在,(16,12)或(25,12)或(32,)或()【分析】(1)解一元二次方程x215x160,对称点A(16,0),根据直线BC的解析式为ykx12,求出与y轴交点C为(0,12),利用三角函数求出tanBCO= tanOAC=,求出OB=即可;(2)过点D作DEy轴于E,DFx轴于F,利用勾股定理求出AC=,BC=,根据三角函数求出tanCAD,求出,利用三角函数求出DE= CDsinBCO=,再利用勾股定理求出点D(-3,8)即可;(3)过点A作AP1与过点C与x轴平行的直线交于P1,先证四边形COAP1为矩形,求出点P1(16,12),再证P1CACAB,作P2AAC交CP1

18、延长线于P2,可得CAP2=BCA=90,P2CA=CAB,可证CAP2ACB,先求三角函数值cosCAO=,再利用三角函数值cosP2CA= cosCAO=,求出,得出点P2()作P3CA=OCA,在射线CP3截取CP3=CO=12,连结AP3,先证CP3ACOA(SAS)再证P3CACAB,设P3(x,y)利用勾股定理列方程,解方程得出点P3(),延长CP3与延长线交P4,过P4作PHx轴于H,先证CAP4ACB,再证P4P3AP4HA(ASA),利用cosP3CA=,求得即可【详解】解:(1)x215x160,因式分解得,解得,点A在x轴的正半轴上,OA=16,点A(16,0),直线BC

19、的解析式为ykx12,与y轴交点C为(0,12),tanOAC=,OCA+OAC=90,ACBC,BCO+OCA=90,BCO=OAC,tanBCO= tanOAC=,OB=,点B(-9,0);(2)过点D作DEy轴于E,DFx轴于F,在RtAOC中,AC=,在RtBOC中BC=,tanCAD,sinBCO=,DE= CDsinBCO=,CE=,OE=OC-EC=12-4=8,点D(-3,8),双曲线y(m0)的一个分支经过点D,;(3)过点A作AP1与过点C与x轴平行的直线交于P1,则CP1A=P1CO=COA=90,四边形COAP1为矩形,点P1(16,12),当点P1(16,12)时,C

20、P1OA,P1CA=CAB,ACB=CP1A,P1CACAB,作P2AAC交CP1延长线于P2,CAP2=BCA=90,P2CA=CAB,CAP2ACB,cosCAO=,cosP2CA= cosCAO=,点P2的横坐标绝对值=,纵坐标的绝对值=OC=12,点P2(),作P3CA=OCA,在射线CP3截取CP3=CO=12,连结AP3,在CP3A和COA中,CP3ACOA(SAS),AP3=OA=16,P3CACAB,设P3(x,y),整理得,解得:,点P3(),延长CP3与延长线交P4,过P4作PHx轴于H,P4CA=CAB,P4AC=BAC=90,CAP4ACB,BAC+HAP4=CAP3+

21、P3AP4=90,CAP3=BAC,HAP4=P3AP4,P4P3A=180-CP3A=180-90=90=P4HA,在P4P3A和P4HA中,P4P3AP4HA(ASA),AP3=AH=16,P3P4=P4H,cosP3CA=,OH=OA+AH=OA+AP3=16+16=32,点,综合直线CB下方,使以C、A、P为顶点的三角形与ABC相似点P的坐标(16,12)或()或或()【点睛】本题考查一元二次方程的解法,直线与y轴的交点,反比例函数解析式,锐角三角形函数,勾股定理,三角形全等判定与性质,矩形判定与性质,三角形相似,图形与坐标,解方程组,本题难度大,综合性强,涉及知识多,利用动点作出准确图形是解题关键

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁