难点解析北师大版八年级数学下册第三章图形的平移与旋转专项练习试题(含详细解析).docx

上传人:可****阿 文档编号:32652398 上传时间:2022-08-09 格式:DOCX 页数:25 大小:1.74MB
返回 下载 相关 举报
难点解析北师大版八年级数学下册第三章图形的平移与旋转专项练习试题(含详细解析).docx_第1页
第1页 / 共25页
难点解析北师大版八年级数学下册第三章图形的平移与旋转专项练习试题(含详细解析).docx_第2页
第2页 / 共25页
点击查看更多>>
资源描述

《难点解析北师大版八年级数学下册第三章图形的平移与旋转专项练习试题(含详细解析).docx》由会员分享,可在线阅读,更多相关《难点解析北师大版八年级数学下册第三章图形的平移与旋转专项练习试题(含详细解析).docx(25页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、八年级数学下册第三章图形的平移与旋转专项练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列图形中,既是轴对称图形又是中心对称图形的是()AB C D2、如果存在一条直线将一个图形分割成两部分,使其中

2、一部分图形按某个方向平移后能够与另一部分重合,那么我们把这种图形称为平移重合图形,下列图形中,不是平移重合图形的是( )ABCD3、下列图形中,既是轴对称图形,又是中心对称图形的是( )ABCD4、 “垃圾分类,利国利民”,在2019年7月1日起上海开始正式实施垃圾分类,到2020年底先行先试的46个重点城市,要基本建成垃圾分类处理系统以下四类垃圾分类标志的图形,其中既是轴对称图形又是中心对称图形的是( )A可回收物B有害垃圾C厨余垃圾D其他垃圾5、点向上平移4个单位,再向左平移3个单位到点B,则点B的坐标为( )ABCD6、如图,在平面直角坐标系中,点A的坐标为,沿x轴向右平移后得到,A点的

3、对应点在直线上,则点与其对应点之间的距离为( )A4B6C8D107、小明将图案绕某点连续旋转若干次,每次旋转相同角度,设计出一个外轮廓为正六边形的图案(如图),则可以为( )A30B60C90D1208、如图,点D是等边ABC内一点,AD3,BD3,CD,ACE是由ABD绕点A逆时针旋转得到的,则ADC的度数是()A40B45C105D559、如图,将OAB绕点O逆时针旋转70到OCD的位置,若AOB40,则AOD的度数等于( )A29B30C31D3210、下列图形中,是中心对称图形的是( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,ABC中,A

4、CB=90,A=28,若以点C为旋转中心,将ABC逆时针旋转到DEC的位置,点在边DE上,则旋转角的度数是_2、如图,在平面直角坐标系中,已知点,将绕坐标原点逆时针旋转至,则点的坐标是_3、如图RtABC中,C90,BC3,AC4,将ABC绕点B逆时针旋转得ABC,若点C在AB上,则AA的长为 _4、在平面直角坐标系中,点A(3,1)绕原点逆时针旋转180得到的点A的坐标是 _5、如图,ABC绕点B旋转后到达BDE处,若ABC120,CBD30,则DBE_,CBE_三、解答题(5小题,每小题10分,共计50分)1、如图,在平面直角坐标系中,ABC如图所示(1)画出把ABC向下平移3个单位长度,

5、再向左平移4个单位长度得到的A1B1C1,并写出B1的坐标;(2)画出把A1B1C1关于y轴对称的A2B2C2,并写出A2、B2、C2三点坐标2、如图,ABC三个顶点的坐标分别为A(2,4),B(1,1),C(4,3)(1)请画出ABC关于x轴对称的A1B1C1,并写出点A1的坐标(2)请画出ABC绕点B逆时针旋转90后的A2BC2,并写出点A2的坐标3、如图,在中,点,分别在边,上,且,此时,成立(1)将绕点逆时针旋转时,在图中补充图形,并直接写出的长度;(2)当绕点逆时针旋转一周的过程中,与的数量关系和位置关系是否仍然成立?若成立,请你利用图证明,若不成立请说明理由;(3)将绕点逆时针旋转

6、一周的过程中,当,三点在同一条直线上时,请直接写出的长度4、如图都是由边长为1的小等边三角形构成的网格图,每个网格图中有3个小等边三角形已涂上阴影(1)请在下面三个网格图中分别涂上一个三角形,使得4个阴影小等边三角形组成一个轴对称图形(3个图形中所涂三角形不同);(2)在两个网格图中分别涂上一个三角形,使得4个阴影小等边三角形组成一个中心对称图形(2个图形中所涂三角形不同)5、如图,在平面直角坐标系中,已知的三个顶点的坐标分别为、(1)画出将关于点对称的图形;(2)写出点、的坐标-参考答案-一、单选题1、C【分析】根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得解把一个图形绕某一点旋

7、转180,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形【详解】解:A是轴对称图形,不是中心对称图形,故本选项不符合题意;B既不是轴对称图形,也不是中心对称图形,故本选项不符合题意;C既是轴对称图形,又是中心对称图形,故本选项符合题意;D既不是轴对称图形,也不是中心对称图形,故本选项不符合题意故选:C【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合2、D【分析】如图,平行四边形ABCD

8、中,取BC,AD的中点E,F,连接EF,证明平行四边形是平移重合图形,即可判断A、B、C;再由找不到一条直线将圆分割成两部分,使其中一部分图形按某个方向平移后能够与另一部分重合即可判断D【详解】解:如图,平行四边形ABCD中,取BC,AD的中点E,F,连接EF则有:AF=FD,BE=EC,AB=EF=CD,四边形ABEF向右平移可以与四边形EFCD重合,平行四边形ABCD是平移重合图形同理可证,正方形,长方形,也是平移重合图形,故选项A、B、C不符合题意,而找不到一条直线将圆分割成两部分,使其中一部分图形按某个方向平移后能够与另一部分重合,则圆不是平移重合图形,故D符合题意;故选D【点睛】本题

9、考查平移图形的定义,解题的关键是理解题意,灵活运用所学知识解决问题3、B【详解】解:A、是轴对称图形,不是中心对称图形,故本选项不符合题意;B、既是轴对称图形,又是中心对称图形,故本选项符合题意;C、不是轴对称图形,是中心对称图形,故本选项不符合题意;D、不是轴对称图形,是中心对称图形,故本选项不符合题意;故选:B【点睛】本题考查了轴对称图形和中心对称图形,熟记中心对称图形的定义(在平面内,把一个图形绕某点旋转,如果旋转后的图形与另一个图形重合,那么这两个图形互为中心对称图形)和轴对称图形的定义(如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形)是解题关键4、

10、B【分析】由题意根据轴对称图形和中心对称图形的定义对各选项进行判断,即可得出答案【详解】解:A、是轴对称图形,不是中心对称图形,故此选项不合题意;B、既是轴对称图形,也是中心对称图形,故此选项符合题意;C、是轴对称图形,不是中心对称图形,故此选项不合题意;D、既不是轴对称图形,也不是中心对称图形,故此选项不符合题意;故选:B.【点睛】本题考查中心对称图形与轴对称图形的概念,注意掌握判断轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;判断中心对称图形是要寻找对称中心,旋转180度后与原图重合5、C【分析】利用平移中点的变化规律:横坐标右移加,左移减;纵坐标上移加,下移减求解即可【详解】解:

11、点A的坐标为(3,5),将点A向上平移4个单位,再向左平移3个单位到点B,点B的横坐标是:33=6,纵坐标为:5+4=1,即(6,1)故选:C【点睛】本题考查图形的平移变换,关键是要懂得左右移动改变点的横坐标,左减、右加;上下移动改变点的纵坐标,下减、上加6、D【分析】先根据平移的特点可知所求的距离为,且,点纵坐标与点A纵坐标相等,再将其代入直线求出点横坐标,从而可知的长,即可得出答案【详解】解:A(0,6)沿x轴向右平移后得到,点的纵坐标为6,令,代入直线得,的坐标为(10,6),由平移的性质可得,故选D【点睛】本题考查了平移的性质、一次函数图像上点的坐标特点,掌握理解平移的性质是解题关键7

12、、B【分析】由题意依据每次旋转相同角度,旋转了六次,且旋转了六次刚好旋转了一周为360进行分析即可得出答案.【详解】解:因为每次旋转相同角度,旋转了六次,且旋转了六次刚好旋转了一周为360,所以每次旋转相同角度 .故选:B.【点睛】本题考查旋转的性质,解题的关键是能够找到旋转中心,从而确定旋转角的度数8、C【分析】连接DE,由旋转的性质可证明是等边三角形,得,再由勾股定理的逆定理可证明是等腰直角三角形得出,从而可得出结论【详解】解:连接DE,如图:是等边三角形,AB=AC, 由旋转可得, ,即 是等边三角形,DE=AD=3, DE3,CE3,CD, 是等腰直角三角形, 故选:C【点睛】此题是旋

13、转的性质,主要考查了等边三角形的性质和判定,勾股定理逆定理,解本题的关键是判断出ADE是等边三角形9、B【分析】由旋转的性质可得DOB=70,即可求解【详解】解:将OAB绕点O逆时针旋转70到OCD,DOB=70,AOB=40,AOD=BOD-AOB=30,故选:B【点睛】本题考查了旋转的性质,熟练掌握旋转的性质是本题的关键10、A【详解】解:A、是中心对称图形,故本选项符合题意;B、是轴对称图形,不是中心对称图形,故本选项不符合题意;C、是轴对称图形,不是中心对称图形,故本选项不符合题意;D、是轴对称图形,不是中心对称图形,故本选项不符合题意;【点睛】本题主要考查了中心对称图形的定义,熟练掌

14、握在平面内,把一个图形绕着某个点旋转180,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形是解题的关键二、填空题1、56【分析】直接利用旋转的性质得出EC=BC,进而利用三角形内角和定理得出E=ABC=62,即可得出ECB的度数,得出答案即可【详解】解:以点C为旋转中心,将ABC旋转到DEC的位置,点B在边DE上,EC=BC,ACB=90,A=28,E=ABC=62,EBC=62,ECB=180-62-62=56,则旋转角的度数是56故答案为:56【点睛】此题主要考查了旋转的性质以及三角形内角和定理,得出E=ABC的度数是解题关键2、【分析】分别过点 作轴, 轴于点 ,可证得

15、 ,从而得到 ,即可求解【详解】解:如图,分别过点 作轴, 轴于点 , , ,根据题意得: , , , , ,点, , ,点的坐标是 故答案为:【点睛】本题主要考查了图形的旋转,全等三角形的判定和性质,准确得到是解题的关键3、【分析】根据旋转的性质可得,勾股定理求得,进而求得,在勾股定理即可求得【详解】解:RtABC中,C90,BC3,AC4,将ABC绕点B逆时针旋转得ABC,在中, 故答案为:【点睛】本题考查了勾股定理,旋转的性质,掌握旋转的性质是解题的关键4、(3,1)【分析】由条件可知A点和A点关于原点对称,可求得答案【详解】解:将OA绕原点O逆时针旋转180得到OA,A点和A点关于原点

16、对称,A(3,1),A(3,1),故答案为:(3,1)【点睛】本题主要考查旋转的定义,由条件求得A和A关于原点对称是解题的关键5、120; 150 【分析】图形的旋转只是改变图形的位置,不改变图形的形状与大小,旋转前后两个三角形全等,并且旋转角都相等,即可求解 【详解】解:根据旋转的性质得,根据题意,旋转角为,故答案是:,【点睛】本题主要考查了旋转的性质,解题的关键是掌握旋转前后两个三角形全等,并且旋转角都相等的内容 三、解答题1、(1)图见解析,B1(2,0);(2)图见解析,A2(4,2),B2(2,0),C2(0,-3)【分析】(1)根据平移的方式,把ABC向下平移3个单位长度,再向左平

17、移4个单位长度得到的A1B1C1,即将的横坐标减4,纵坐标减3,找到对应点,并顺次连接,则A1B1C1即为所求,根据平面直角坐标系写出点的坐标即可(2)根据轴对称的性质,找到关于y轴对称的点并顺次连接,则A2B2C2即为所求,根据平面直角坐标系写出点的坐标即可【详解】解:(1)如图,A1B1C1即为所求,B1(2,0)(2)如图,A2B2C2即为所求,A2(4,2),B2(2,0),C2(0,-3)【点睛】本题考查了平移作图,轴对称作图,坐标与图形,掌握平移与轴对称的性质是解题的关键2、(1)画图见解析,;(2)画图见解析,(-2,2)【分析】(1)根据关于y轴的点的坐标特征分别作出ABC的各

18、个顶点关于x轴的对称点,然后连线作图即可;(2)利用网格特点和旋转的性质画出点A2、B、C2的坐标,然后描点即可得到A2BC2,然后写出点A2的坐标【详解】解:(1)如图,即为所求;是A(2,4)关于x轴对称的点,根据关于x轴对称的点的坐标特征可知:;(2)如图,即为所求,的坐标为(-2,2)【点睛】本题考查轴对称及旋转作图,掌握点的坐标变化规律找准图形对应点正确作图是解题关键3、(1)补充图形见解析;(2),仍然成立,证明见解析;(3)或【分析】(1)根据旋转作图的方法作图,再根据勾股定理求出BE的长即可;(2)根据SAS证明得AD=BE,1=2,再根据1+3+4=90得23+4=90,从而

19、可得出结论;(3)分两种情况,运用勾股定理求解即可【详解】解:(1)如图所示,根据题意得,点D在BC上,是直角三角形,且BC=,CE= 由勾股定理得,;(2),仍然成立.证明:延长交于点,又,在中,.(3)当点D在AC上方时,如图1所示,同(2)可得AD=BE 同理可证 在RtCDE中,DE= 在RtACB中, 设AD=BE=x,在RtABE中, 解得, 当点D在AC下方时,如图2所示,同(2)可得AD=BE 同理可证 在RtCDE中,DE= 在RtACB中, 设AD=BE=x,在RtABE中, 解得, .所以,AD的值为或【点睛】本题考查了旋转的性质,全等三角形的判定与性质,勾股定理等知识,

20、熟练解答本题的关键4、(1)见解析;(2)见解析【分析】(1)直接利用轴对称图形的性质得出符合题意的答案;(2)直接利用中心对称图形的性质得出符合题意的答案【详解】解:(1)如图所示:都是轴对称图形;(2)如图所示:都是中心对称图形【点睛】此题主要考查了利用轴对称设计图案、利用旋转设计图案,正确掌握相关定义是解题关键5、(1)见解析;(2),【分析】(1)直接利用关于点O对称的性质得出对应点位置,顺次连接各个对应点,即可;(2)根据对应点位置直接写出坐标,即可【详解】解:(1)如图所示,(2),【点睛】本题考查了利用中心对称变换在坐标系中作图,熟练掌握网格结构,准确找出对应点的位置是解题的关键

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁